Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Steven van Dijk"'
Autor:
Ittai B. Muller, Stijn Meijers, Peter Kampstra, Steven van Dijk, Michel van Elswijk, Marry Lin, Anna M. Wojtuszkiewicz, Gerrit Jansen, Robert de Jonge, Jacqueline Cloos
Publikováno v:
BMC Bioinformatics, Vol 22, Iss 1, Pp 1-15 (2021)
Abstract Background Computational tools analyzing RNA-sequencing data have boosted alternative splicing research by identifying and assessing differentially spliced genes. However, common alternative splicing analysis tools differ substantially in th
Externí odkaz:
https://doaj.org/article/48488cd6dac8446990ad9680a93d0264
Autor:
Gerrit Jansen, Jacqueline Cloos, Robert de Jonge, Marry Lin, Michel van Elswijk, Anna Wojtuszkiewicz, Peter Kampstra, IB Muller, Stijn Meijers, Steven van Dijk
Publikováno v:
BMC Bioinformatics, 22(1). BioMed Central
BMC Bioinformatics
Muller, I B, Meijers, S, Kampstra, P, van Dijk, S, van Elswijk, M, Lin, M, Wojtuszkiewicz, A M, Jansen, G, de Jonge, R & Cloos, J 2021, ' Computational comparison of common event-based differential splicing tools: practical considerations for laboratory researchers ', BMC Bioinformatics, vol. 22, no. 1, pp. 347 . https://doi.org/10.1186/s12859-021-04263-9
BMC Bioinformatics, Vol 22, Iss 1, Pp 1-15 (2021)
BMC Bioinformatics
Muller, I B, Meijers, S, Kampstra, P, van Dijk, S, van Elswijk, M, Lin, M, Wojtuszkiewicz, A M, Jansen, G, de Jonge, R & Cloos, J 2021, ' Computational comparison of common event-based differential splicing tools: practical considerations for laboratory researchers ', BMC Bioinformatics, vol. 22, no. 1, pp. 347 . https://doi.org/10.1186/s12859-021-04263-9
BMC Bioinformatics, Vol 22, Iss 1, Pp 1-15 (2021)
Background Computational tools analyzing RNA-sequencing data have boosted alternative splicing research by identifying and assessing differentially spliced genes. However, common alternative splicing analysis tools differ substantially in their stati
Publikováno v:
GeoInformatica. 6:381-413
Genetic algorithms (GAs) are powerful combinatorial optimizers that are able to find close-to-optimal solutions for difficult problems by applying the paradigm of adaptation through Darwinian evolution. We describe a framework for GAs capable of solv
Publikováno v:
International Journal of Geographical Information Science, 16(7), 641-661. Taylor and Francis Ltd.
The cartographic labelling problem is the problem of placing text on a map. This includes the positioning of the labels, and determining the shape in the case of line and area feature labels. There are many rules and customs that describe aspects of
Publikováno v:
Evolutionary Computation, 12(2), 243-267. MIT Press Journals
In this paper, we study two recent theoretical models—a population-sizing model and a convergence model—and examine their assumptions to gain insights into the conditions under which selecto-recombinative GAs work well. We use these insights to f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3867fb97d11541785a4cedfcb6dccc31
https://research.tue.nl/nl/publications/5b9bb912-f537-4953-b504-063cb495bcc5
https://research.tue.nl/nl/publications/5b9bb912-f537-4953-b504-063cb495bcc5
Autor:
Dirk Thierens, Steven van Dijk
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783540230922
PPSN
PPSN
We study the impact of the choice of search space for a GA that learns Bayesian networks from data. The most convenient search space is redundant and therefore allows for multiple representations of the same solution and possibly disruption during cr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::12f83000863f174d0fac30349e8c911d
https://doi.org/10.1007/978-3-540-30217-9_15
https://doi.org/10.1007/978-3-540-30217-9_15
Publikováno v:
Genetic and Evolutionary Computation — GECCO 2003 ISBN: 9783540406020
GECCO
GECCO
Recent developments in GA theory have given rise to a number of design principles that serve to guide the construction of selecto-recombinative GAs from which good performance can be expected. In this paper, we demonstrate their application to the de
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::12ff95c77f1db2dfd58abb9259b6f7c9
https://doi.org/10.1007/3-540-45105-6_101
https://doi.org/10.1007/3-540-45105-6_101
Publikováno v:
Knowledge Discovery in Databases: PKDD 2003 ISBN: 9783540200857
PKDD
PKDD
Various different algorithms for learning Bayesian networks from data have been proposed to date. In this paper, we adopt a novel approach that combines the main advantages of these algorithms yet avoids their difficulties. In our approach, first an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::65b56061d79e92a1282ee5babe7d3b05
https://doi.org/10.1007/978-3-540-39804-2_14
https://doi.org/10.1007/978-3-540-39804-2_14