Zobrazeno 1 - 10
of 161
pro vyhledávání: '"Steve Zelditch"'
Autor:
Boris Hanin, Steve Zelditch
Publikováno v:
Journal d'Analyse Mathématique. 147:69-98
Autor:
Steve Zelditch, Alexander Strohmaier
Publikováno v:
Indagationes Mathematicae. 32:323-363
We study the spectrum $\{\lambda_j(m)\}_{j=1}^{\infty}$ of a timelike Killing vector field $Z$ acting as a differential operator $D_Z$ on the Hilbert space of solutions of the massive Klein-Gordon equation $(\Box_g + m^2) u = 0$ on a globally hyperbo
Autor:
Moritz Doll, Steve Zelditch
Publikováno v:
Journal of Spectral Theory. 10:1303-1332
Autor:
Junehyuk Jung, Steve Zelditch
Publikováno v:
Annales de l'Institut Fourier. 70:971-1027
This article concerns the number of nodal domains of eigenfunctions of the Laplacian on special Riemannian $3$-manifolds, namely nontrivial principal $S^1$ bundles $P \to X$ over Riemann surfaces equipped with certain $S^1$ invariant metrics, the Kal
Autor:
Boris Hanin, Steve Zelditch
We prove that smooth Wigner–Weyl spectral sums at an energy level E exhibit Airy scaling asymptotics across the classical energy surface Σ E . This was proved earlier by the authors for the isotropic harmonic oscillator and the proof is extended i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::280183c436d90b6beafd31c8d7209bea
Autor:
Steve Zelditch, Junehyuk Jung
Publikováno v:
International Mathematics Research Notices. 2021:8521-8549
We show that real and imaginary parts of equivariant spherical harmonics on $S^3$ have almost surely a single nodal component. Moreover, if the degree of the spherical harmonic is $N$ and the equivariance degree is $m$, then the expected genus is pro
Autor:
Steve Zelditch, Robert P. H. Chang
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 129:213-241
Let M τ 0 be the Grauert tube (of some fixed radius τ 0 ) of a compact, negatively curved, real analytic Riemannian manifold M without boundary. Let φ λ be a Laplacian eigenfunction on M of eigenvalue − λ 2 and let φ λ C be its holomorphic e
Autor:
John A. Toth, Steve Zelditch
Publikováno v:
Journal of Differential Geometry. 117
This article contains a generalization of the authors' results on numbers of nodal points of eigenfunctions on "good curves" in analytic plane domains (arXiv:0710.0101). The term `good' means that the $L^2$ norms of restrictions of eigenfunctions of
Autor:
Steve Zelditch, Alexander Strohmaier
We review our recent relativistic generalization of the Gutzwiller–Duistermaat–Guillemin trace formula and Weyl law on globally hyperbolic stationary space-times with compact Cauchy hypersurfaces. We also discuss anticipated generalizations to no
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::684aab501be64208b1c568aa76b1719f
https://eprints.whiterose.ac.uk/158798/1/QMath02262020.pdf
https://eprints.whiterose.ac.uk/158798/1/QMath02262020.pdf
Autor:
Peng Zhou, Steve Zelditch
Publikováno v:
Journal of Symplectic Geometry. 17:793-856