Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Stephan M. Wehrli"'
Autor:
Stephan M. Wehrli, J. Elisenda Grigsby
Publikováno v:
Mathematical Research Letters. 27:711-742
Publikováno v:
Inventiones mathematicae. 215:383-492
Motivated by topology, we develop a general theory of traces and shadows for an endobicategory, which is a pair: bicategory and endobifunctor . For a graded linear bicategory and a fixed invertible parameter q, we quantize this theory by using the en
Publikováno v:
Pure and Applied Mathematics Quarterly. 13:389-436
We prove that the Khovanov-Lee complex of an oriented link, L, in a thickened annulus, A x I, has the structure of a bifiltered complex whose filtered chain homotopy type is an invariant of the isotopy class of L in A x I. Using ideas of Ozsvath-Stip
Publikováno v:
Transactions of the American Mathematical Society. 367:7103-7131
In 2001, Khovanov and Seidel constructed a faithful action of the (m+1)-strand braid group on the derived category of left modules over a quiver algebra, A_m. We interpret the Hochschild homology of the Khovanov-Seidel braid invariant as a direct sum
Autor:
Stephan M. Wehrli, J. Elisenda Grigsby
Publikováno v:
Association for Women in Mathematics Series ISBN: 9783319341378
Let \(n \in \mathbb {Z}^+\). We provide two short proofs of the following classical fact, one using Khovanov homology and one using Heegaard–Floer homology: if the closure of an n-strand braid \(\sigma \) is the n-component unlink, then \(\sigma \)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d713afe27f03d2f0c759a6b4184ae88c
https://doi.org/10.1007/978-3-319-34139-2_2
https://doi.org/10.1007/978-3-319-34139-2_2
Publikováno v:
Selecta Mathematica. 20:1-55
We discuss a relationship between Khovanov- and Heegaard Floer-type homology theories for braids. Explicitly, we define a filtration on the bordered Heegaard–Floer homology bimodule associated to the double-branched cover of a braid and show that i
Autor:
Stephan M. Wehrli
Publikováno v:
Quantum Topology. :111-128
We prove that Khovanov homology and Lee homology with coefficients in F2 = Z/2Z are invariant under component-preserving link mutations.
Let L be a link in a thickened annulus. We show that its sutured annular Khovanov homology carries an action of the exterior current algebra of the Lie algebra sl_2. When L is an m-framed n-cable of a knot K in the three-sphere, its sutured annular K
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c87483527047316f6a27b2d567420edd
http://arxiv.org/abs/1505.04386
http://arxiv.org/abs/1505.04386
Autor:
J. Elisenda Grigsby, Stephan M. Wehrli
Publikováno v:
International Mathematics Research Notices.
In [18], Ozsvath-Szabo established an algebraic relationship, in the form of a spectral sequence, between the reduced Khovanov homology of (the mirror of) a link and the Heegaard Floer homology of its double-branched cover. This relationship, extende
Autor:
J. Elisenda Grigsby, Stephan M. Wehrli
Publikováno v:
Algebr. Geom. Topol. 10, no. 4 (2010), 2009-2039
Lawrence Roberts, extending the work of Ozsvath-Szabo, showed how to associate to a link, L, in the complement of a fixed unknot, B, in S^3, a spectral sequence from the Khovanov homology of a link in a thickened annulus to the knot Floer homology of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::882221107a19480e5c70e55e5285c758
http://arxiv.org/abs/0907.4375
http://arxiv.org/abs/0907.4375