Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Stenzel, Raffael"'
Autor:
Stenzel, Raffael
We give a direct proof of the fact that Lurie's Unstraightening functor induces an equivalence between the strict $(\infty,2)$-category of indexed quasi-categories and the strict $(\infty,2)$-category of fibered quasi-categories over any given quasi-
Externí odkaz:
http://arxiv.org/abs/2403.01167
Autor:
Stenzel, Raffael
We define and study the $(\infty,2)$-category $\mathbf{Cat}_{\infty}(\mathcal{C})$ of $(\infty,1)$-categories internal to a general $(\infty,1)$-category $\mathcal{C}$ via an associated externalization construction. In the first part, we show various
Externí odkaz:
http://arxiv.org/abs/2402.01396
Autor:
Stenzel, Raffael
We study various characterizations of higher sites over a given $\infty$-category $\mathcal{C}$ which are conceptually in line with their classical ordinary categorical counterparts, and extract some new results about $\infty$-topos theory from them.
Externí odkaz:
http://arxiv.org/abs/2306.06619
Autor:
Stenzel, Raffael
We introduce the notion of a higher covering diagram in a base $\infty$-category $\mathcal{C}$. The theory of higher covering diagrams in $\mathcal{C}$ will be shown to recover various descent conditions known from the $\infty$-categorical literature
Externí odkaz:
http://arxiv.org/abs/2205.08646
Autor:
Stenzel, Raffael
We define and study notions of comprehension in $(\infty,1)$-category theory. In essence, we do so by implementing B\'{e}nabou's foundations of naive category theory in a univalent meta-theory. In particular, we develop natural generalizations of sma
Externí odkaz:
http://arxiv.org/abs/2010.09663
Autor:
Stenzel, Raffael
Univalence, originally a type theoretical notion at the heart of Voevodsky's Univalent Foundations Program, has found general importance as a higher categorical property that characterizes descent and hence classifying maps in $(\infty,1)$-categories
Externí odkaz:
http://arxiv.org/abs/1911.06640
Autor:
Stenzel, Raffael
This paper is a study of Bousfield-Segal spaces, a notion introduced by Julie Bergner drawing on ideas about Eilenberg-Mac Lane objects due to Bousfield. In analogy to Rezk's Segal spaces, they are defined in such a way that Bousfield-Segal spaces na
Externí odkaz:
http://arxiv.org/abs/1911.02454
Autor:
Stenzel, Raffael
We prove a correspondence between $\kappa$-small fibrations in simplicial presheaf categories equipped with the injective or projective model structure (and left Bousfield localizations thereof) and relatively $\kappa$-compact maps in their underlyin
Externí odkaz:
http://arxiv.org/abs/1911.01895
Autor:
STENZEL, RAFFAEL1 stenzelr@math.muni.cz
Publikováno v:
Homology, Homotopy & Applications. 2022, Vol. 24 Issue 1, p217-243. 27p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.