Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Steinthor Ardal"'
Autor:
Thjodbjorg Eiriksdottir, Steinthor Ardal, Benedikt A. Jonsson, Sigrun H. Lund, Erna V. Ivarsdottir, Kristjan Norland, Egil Ferkingstad, Hreinn Stefansson, Ingileif Jonsdottir, Hilma Holm, Thorunn Rafnar, Jona Saemundsdottir, Gudmundur L. Norddahl, Gudmundur Thorgeirsson, Daniel F. Gudbjartsson, Patrick Sulem, Unnur Thorsteinsdottir, Kari Stefansson, Magnus O. Ulfarsson
Publikováno v:
Communications Biology, Vol 4, Iss 1, Pp 1-11 (2021)
Eiriksdottir et al. use a temporal proteomic dataset from over 22,000 Icelandic individuals to identify predictors and predict all-cause mortality. Their findings suggest that the plasma proteome may be of value in general health screening for risk o
Externí odkaz:
https://doaj.org/article/1ff49a74495d4c738768f8f340f91c3e
Autor:
Benedikt Atli Jónsson, Unnur Thorsteinsdottir, Egil Ferkingstad, Thorunn Rafnar, Kari Stefansson, Patrick Sulem, Erna V. Ivarsdottir, Sigrun H. Lund, Magnus O. Ulfarsson, Daniel F. Gudbjartsson, Ingileif Jonsdottir, Thjodbjorg Eiriksdottir, Steinthor Ardal, Jona Saemundsdottir, Gudmundur Thorgeirsson, Hilma Holm, Gudmundur L. Norddahl, Hreinn Stefansson, Kristjan Norland
Publikováno v:
Communications Biology, Vol 4, Iss 1, Pp 1-11 (2021)
Communications Biology
Communications Biology
Predicting all-cause mortality risk is challenging and requires extensive medical data. Recently, large-scale proteomics datasets have proven useful for predicting health-related outcomes. Here, we use measurements of levels of 4,684 plasma proteins