Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Stein, B. van"'
Publikováno v:
GECCO '22: Proceedings of the genetic and evolutionary computation conference companion, 1674-1682. Boston: ACM
STARTPAGE=1674;ENDPAGE=1682;TITLE=GECCO '22: Proceedings of the genetic and evolutionary computation conference companion
STARTPAGE=1674;ENDPAGE=1682;TITLE=GECCO '22: Proceedings of the genetic and evolutionary computation conference companion
The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a commonly used iterative optimisation heuristic for optimising black-box functions. CMA-ES comes in many flavours with different configuration settings. In this work, we investigate whe
Publikováno v:
GECCO '22: Proceedings of the genetic and evolutionary computation conference, 511-519. New York: Association for Computing Machinery
STARTPAGE=511;ENDPAGE=519;TITLE=GECCO '22: Proceedings of the genetic and evolutionary computation conference
STARTPAGE=511;ENDPAGE=519;TITLE=GECCO '22: Proceedings of the genetic and evolutionary computation conference
Bayesian optimization is often used to optimize expensive black box optimization problems with long simulation times. Typically Bayesian optimization algorithms propose one solution per iteration. The downside of this strategy is the sub-optimal use
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::10f8a062c7b02789093ad1b9593e04ec
https://doi.org/10.1145/3512290.3528696
https://doi.org/10.1145/3512290.3528696
Autor:
Long, F.X., Stein, B. van, Frenzel, M., Krause, P., Gitterle, M., Bäck, T.H.W., Fieldsend, J.E.
Publikováno v:
GECCO '22: Proceedings of the genetic and evolutionary computation conference, 1227-1236. ACM
STARTPAGE=1227;ENDPAGE=1236;TITLE=GECCO '22: Proceedings of the genetic and evolutionary computation conference
STARTPAGE=1227;ENDPAGE=1236;TITLE=GECCO '22: Proceedings of the genetic and evolutionary computation conference
Autor:
Hanse, G., Winter, R. de, Stein, B. van, Bäck, T.H.W., Nicosia, G., Ojha, V., Malfa, E. La, Malfa, G. La, Jansen, G., Pardalos, P.M., Giuffrida, G., Umeton, R.
Publikováno v:
Machine Learning, Optimization, and Data Science. LOD 2021, 144-156. Cham: Springer
STARTPAGE=144;ENDPAGE=156;TITLE=Machine Learning, Optimization, and Data Science. LOD 2021
STARTPAGE=144;ENDPAGE=156;TITLE=Machine Learning, Optimization, and Data Science. LOD 2021
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::814ac04cc416d31740bd786e5847d31b
http://hdl.handle.net/1887/3279362
http://hdl.handle.net/1887/3279362
Autor:
Vermetten, D.L., Stein, B. van, Kononova, A.V., Caraffini, F., Kumar, B.V., Oliva, D., Suganthan, P.N
Publikováno v:
Studies in Computational Intelligence, 1-22. Singapore: Springer
STARTPAGE=1;ENDPAGE=22;TITLE=Studies in Computational Intelligence
Studies in Computational Intelligence ISBN: 9789811680816
STARTPAGE=1;ENDPAGE=22;TITLE=Studies in Computational Intelligence
Studies in Computational Intelligence ISBN: 9789811680816
Differential Evolution is a popular optimisation method with a small number of parameters. However, different hyper-parameters and Differential Evolution variants such as different mutation operators and the F and Cr parameter may introduce structura
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c42429d91104da44ffd7730d7e3256f5
https://doi.org/10.1007/978-981-16-8082-3_1
https://doi.org/10.1007/978-981-16-8082-3_1
Publikováno v:
Applied Intelligence
Kriging or Gaussian Process Regression is applied in many fields as a non-linear regression model as well as a surrogate model in the field of evolutionary computation. However, the computational and space complexity of Kriging, that is cubic and qua
Autor:
Winter, R. de, Stein, B. van, Bäck, T.H.W., Ishibuchi, H., Zhang, Q., Cheng, R., Li, K., Li, H., Wang, H., Zhou, A.
Publikováno v:
Evolutionary Multi-Criterion Optimization, 270-282. Cham: Springer Nature Switzerland AG 2021
STARTPAGE=270;ENDPAGE=282;TITLE=Evolutionary Multi-Criterion Optimization
Lecture Notes in Computer Science ISBN: 9783030720612
EMO
STARTPAGE=270;ENDPAGE=282;TITLE=Evolutionary Multi-Criterion Optimization
Lecture Notes in Computer Science ISBN: 9783030720612
EMO
This paper proposes a novel Self-Adaptive algorithm for Multi-Objective Constrained Optimization by using Radial Basis Function Approximations, SAMO-COBRA. The algorithm automatically determines the best Radial Basis Function-fit as surrogates for th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5565f8e6b98496a37964feea12b69a7e
https://doi.org/10.1007/978-3-030-72062-9_22
https://doi.org/10.1007/978-3-030-72062-9_22
Publikováno v:
2021 IEEE Symposium Series on Computational Intelligence (SSCI) Proceedings, 01-08. Orlando, Florida: IEEE
STARTPAGE=01;ENDPAGE=08;TITLE=2021 IEEE Symposium Series on Computational Intelligence (SSCI) Proceedings
STARTPAGE=01;ENDPAGE=08;TITLE=2021 IEEE Symposium Series on Computational Intelligence (SSCI) Proceedings
Automated symmetry detection is still a difficult task in 2021. However, it has applications in computer vision, and it also plays an important part in understanding art. This paper focuses on aiding the latter by comparing different state-of-the-art
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::aaec2b72521ea4e1d7cc89634186c358
https://ieeexplore.ieee.org/document/9660120
https://ieeexplore.ieee.org/document/9660120
Publikováno v:
COMPIT'21, 185-196. Mülheim: Hamburg University of Technology
STARTPAGE=185;ENDPAGE=196;TITLE=COMPIT'21
STARTPAGE=185;ENDPAGE=196;TITLE=COMPIT'21
This contribution shows how, in the preliminary design stage, naval architects can make more informed decisions by using machine learning. In this ship design phase, little information is available, and decisions need to be made in a limited amount o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::11c0269ffdeb5a9f27d08adc310a1310
https://hdl.handle.net/1887/3245497
https://hdl.handle.net/1887/3245497
Publikováno v:
GECCO Companion
Proceedings of the Genetic and Evolutionary Computation Conference Companion, 1234-1242. ACM
STARTPAGE=1234;ENDPAGE=1242;TITLE=Proceedings of the Genetic and Evolutionary Computation Conference Companion
Proceedings of the Genetic and Evolutionary Computation Conference Companion, 1234-1242. ACM
STARTPAGE=1234;ENDPAGE=1242;TITLE=Proceedings of the Genetic and Evolutionary Computation Conference Companion
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link. Heuristic optimisation algorithms are in high demand due to the overwhelming amount of complex optimis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::312179bca0a50c6ae494c4fad915c332