Zobrazeno 1 - 10
of 3 661
pro vyhledávání: '"Stefko, A."'
The $Q$-polynomial property is an algebraic property of distance-regular graphs, that was introduced by Delsarte in his study of coding theory. Many distance-regular graphs admit the $Q$-polynomial property. Only recently the $Q$-polynomial property
Externí odkaz:
http://arxiv.org/abs/2404.12510
Quantum key distribution (QKD) provides a method of ensuring security using the laws of physics, avoiding the risks inherent in cryptosystems protected by computational complexity. Here we investigate the feasibility of satellite-based quantum key ex
Externí odkaz:
http://arxiv.org/abs/2312.02002
Let $\Gamma=(X,\mathcal{R})$ denote a finite, simple, connected, and undirected non-bipartite graph with vertex set $X$ and edge set $\mathcal{R}$. Fix a vertex $x \in X$, and define $\mathcal{R}_f = \mathcal{R} \setminus \{yz \mid \partial(x,y) = \p
Externí odkaz:
http://arxiv.org/abs/2308.16679
Let $\Gamma=(X,\mathcal{R})$ denote a finite, simple, connected, and undirected non-bipartite graph with vertex set $X$ and edge set $\mathcal{R}$. Fix a vertex $x \in X$, and define $\mathcal{R}_f = \mathcal{R} \setminus \{yz \mid \partial(x,y) = \p
Externí odkaz:
http://arxiv.org/abs/2305.08937
Publikováno v:
IET Quantum Communication, Vol 5, Iss 3, Pp 291-302 (2024)
Abstract Quantum key distribution (QKD) provides a method of ensuring security using the laws of physics, avoiding the risks inherent in cryptosystems protected by computational complexity. Here, the authors investigate the feasibility of satellite
Externí odkaz:
https://doaj.org/article/777fc7bc92764892888b30b099085d4c
Publikováno v:
Journal of Craniovertebral Junction and Spine, Vol 15, Iss 3, Pp 290-297 (2024)
Introduction: Spine fractures occur commonly in the geriatric population. Super-elderly individuals (i.e., those 80 years of age and older) represent a growing segment of the population and are especially prone to these fractures. The contemporary ep
Externí odkaz:
https://doaj.org/article/450e128512d542f1b8913ab9ae897306
Autor:
Fernández, Blas, Maleki, Roghayeh, Miklavič, Štefko, Razafimahatratra, Andriaherimanana Sarobidy
Let $\Gamma=(V,E)$ be a graph of order $n$. A {\em closed distance magic labeling} of $\Gamma$ is a bijection $\ell : V \to \{1,2, \ldots, n\}$ for which there exists a positive integer $r$ such that $\sum_{x \in N[u]} \ell(x) = r$ for all vertices $
Externí odkaz:
http://arxiv.org/abs/2212.12441
Autor:
Sagar, Jaya, Hastings, Elliott, Zhang, Piede, Stefko, Milan, Lowndes, David, Oi, Daniel, Rarity, John, Joshi, Siddarth K.
Publikováno v:
SPIE Proceedings 12335, Quantum Technology: Driving Commercialisation of an Enabling Science III, 1233509 (11 January 2023)
Satellite based Quantum Key Distribution (QKD) in Low Earth Orbit (LEO) is currently the only viable technology to span thousands of kilometres. Since the typical overhead pass of a satellite lasts for a few minutes, it is crucial to increase the the
Externí odkaz:
http://arxiv.org/abs/2211.10814
Do\v{s}li\'{c} et al. defined the Mostar index of a graph $G$ as $Mo(G)=\sum\limits_{uv\in E(G)}|n_G(u,v)-n_G(v,u)|$, where, for an edge $uv$ of $G$, the term $n_G(u,v)$ denotes the number of vertices of $G$ that have a smaller distance in $G$ to $u$
Externí odkaz:
http://arxiv.org/abs/2211.06682
Autor:
Colquhoun, Craig D., Jeffrey, Hazel, Greenland, Steve, Mohapatra, Sonali, Aitken, Colin, Cebecauer, Mikulas, Crawshaw, Charlotte, Jeffrey, Kenny, Jeffreys, Toby, Karagiannakis, Philippos, McTaggart, Ahren, Stark, Caitlin, Wood, Jack, Joshi, Siddarth K., Sagar, Jaya, Hastings, Elliott, Zhang, Peide, Stefko, Milan, Lowndes, David, Rarity, John G., Sidhu, Jasminder S., Brougham, Thomas, McArthur, Duncan, Pousa, Robert G., Oi, Daniel K. L., Warden, Matthew, Johnston, Eilidh, Leck, John
Quantum key distribution (QKD) is a theoretically proven future-proof secure encryption method that inherits its security from fundamental physical principles. Craft Prospect, working with a number of UK organisations, has been focused on miniaturisi
Externí odkaz:
http://arxiv.org/abs/2210.11285