Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Stefanos Petrakis"'
Publikováno v:
Linguistik Online, Vol 38, Iss 2 (2009)
Der Beitrag gibt einen Überblick über die Initiative Korpus Südtirol und beschreibt das im Entstehen begriffene Korpus des geschriebenen Deutschen in Südtirol. Dabei wird insbesondere auf den inhaltlichen Aufbau, die erhobenen Metadaten sowie die
Externí odkaz:
https://doaj.org/article/f9d7205576cf44a38c3c7a98c222e424
Autor:
Stefanos Petrakis, Manfred Klenner
Publikováno v:
Data & Knowledge Engineering. 90:13-21
The current endeavour focuses on the notion of positive versus negative polarity preferences of verbs for their direct objects. We observed verbs with a relatively clear positive or negative polarity preference (called polar ), as well as cases of ve
Publikováno v:
University of Zurich
We introduce the task of word and phrase-level polarity annotation for German as part of an attempt to develop a compositional theory of clause-level polarity determination. Thus, annotations should give access to the nested building blocks, the stru
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::deef17a2c299c22717a11ec9eabb81b9
https://www.zora.uzh.ch/id/eprint/55134/
https://www.zora.uzh.ch/id/eprint/55134/
Autor:
Stefanos Petrakis, Manfred Klenner
Publikováno v:
Natural Language Processing and Information Systems ISBN: 9783642311772
NLDB
NLDB
The current endeavour focuses on the notion of positive versus negative polarity preference of verbs for their direct objects. This preference has to be distinguished from a verb's own prior polarity - for the same verb, these two properties might ev
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2bcae08092ad8ea5baf678f027cf4650
https://www.zora.uzh.ch/id/eprint/64977/
https://www.zora.uzh.ch/id/eprint/64977/
Autor:
Vangelis Karkaletsis, Manfred Klenner, George A. Vouros, Vassiliki Rentoumi, Stefanos Petrakis
Publikováno v:
Artificial Intelligence: Theories, Models and Applications ISBN: 9783642128417
SETN
SETN
In the past we have witnessed our machine learning method for sentiment analysis coping well with figurative language, but determining with uncertainty the polarity of mildly figurative cases We have shown that for these uncertain cases, a rule-based
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9753af8aea2d7f4b72417d24dde1ab8e
http://www.zora.uzh.ch/39616/
http://www.zora.uzh.ch/39616/
Publikováno v:
ACII
We introduce an explorative tool for affect analysis from texts. Rather than the full range of emotions, feelings, and sentiment, our system is currently restricted to the positive or negative polarity of phrases and sentences. It analyses the input
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ad4a53623045d7cc3f896c24702b9c06