Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Stefano Melchionna"'
Publikováno v:
Journal of Evolution Equations. 21:5203-5207
Publikováno v:
Journal of evolution equations (Print. ed.) 18 (2018): 49–74. doi:10.1007/s00028-017-0390-6
info:cnr-pdr/source/autori:G. Akagi, S. Melchionna, and U. Stefanelli/titolo:Weighted energy-dissipation approach to doubly nonlinear problems on the half line/doi:10.1007%2Fs00028-017-0390-6/rivista:Journal of evolution equations (Print. ed.)/anno:2018/pagina_da:49/pagina_a:74/intervallo_pagine:49–74/volume:18
J. evol. equ. 18, 49–74 (2018)
info:cnr-pdr/source/autori:G. Akagi, S. Melchionna, and U. Stefanelli/titolo:Weighted energy-dissipation approach to doubly nonlinear problems on the half line/doi:10.1007%2Fs00028-017-0390-6/rivista:Journal of evolution equations (Print. ed.)/anno:2018/pagina_da:49/pagina_a:74/intervallo_pagine:49–74/volume:18
J. evol. equ. 18, 49–74 (2018)
We discuss a variational approach to abstract doubly nonlinear evolution systems defined on the time half line (Formula presented.). This relies on the minimization of weighted energy-dissipation (WED) functionals, namely a family of (Formula present
Autor:
Stefano Melchionna
Publikováno v:
Journal of Differential Equations. 262:3737-3758
We investigate a variational approach to nonpotential perturbations of gradient flows of nonconvex energies in Hilbert spaces. We prove existence of solutions to elliptic-in-time regularizations of gradient flows by combining the minimization of a pa
Autor:
Goro Akagi, Stefano Melchionna
Publikováno v:
Non. diff. equat. app. 26:10 (2019)
The final goal of this paper is to prove existence of local (strong) solutions to a (fully nonlinear) porous medium equation with blow-up term and nondecreasing constraint. To this end, the equation, arising in the context of Damage Mechanics, is ref
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::98850a9cb030be0b77a01b13a5091636
http://arxiv.org/abs/1802.09570
http://arxiv.org/abs/1802.09570
Autor:
Stefano Melchionna, Annalisa Iuorio
In this paper we study the long-time behavior of a nonlocal Cahn-Hilliard system with singular potential, degenerate mobility, and a reaction term. In particular, we prove the existence of a global attractor with finite fractal dimension, the existen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9739c4c1e7ae202ccf6925c845c6d119
http://arxiv.org/abs/1706.05996
http://arxiv.org/abs/1706.05996
Autor:
Matthias Liero, Stefano Melchionna
We consider a family of doubly nonlinear evolution equations that is given by families of convex dissipation potentials, nonconvex energy functionals, and external forces parametrized by a small parameter ε. For each of these problems, we introduce
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9311f6466dc9e3162837e4b093498972
Autor:
Stefano Melchionna, Elisabetta Rocca
Publikováno v:
Interfaces and free boundaries
19 (2017): 571–590. doi:10.4171/IFB/393
info:cnr-pdr/source/autori:S. Melchionna and E. Rocca/titolo:Varifold solutions of a sharp interface limit of a diffuse interface model for tumor growth/doi:10.4171%2FIFB%2F393/rivista:Interfaces and free boundaries (Print)/anno:2017/pagina_da:571/pagina_a:590/intervallo_pagine:571–590/volume:19
19 (2017): 571–590. doi:10.4171/IFB/393
info:cnr-pdr/source/autori:S. Melchionna and E. Rocca/titolo:Varifold solutions of a sharp interface limit of a diffuse interface model for tumor growth/doi:10.4171%2FIFB%2F393/rivista:Interfaces and free boundaries (Print)/anno:2017/pagina_da:571/pagina_a:590/intervallo_pagine:571–590/volume:19
We discuss the sharp interface limit of a diffuse interface model for a coupled Cahn-Hilliard--Darcy system that models tumor growth when a certain parameter $\varepsilon>0$, related to the interface thickness, tends to zero. In particular, we prove
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::228e73c7d6017bd1a6a6c4c712579561
http://arxiv.org/abs/1610.04478
http://arxiv.org/abs/1610.04478
Autor:
Stefano Melchionna
We advance a variational method to prove qualitative properties such as symmetries, monotonicity, upper and lower bounds, sign properties, and comparison principles for a large class of doubly-nonlinear evolutionary problems including gradient flows,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::879d426fbb2b41d692cd877c4b47a0bb