Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Stefano Filipazzi"'
Autor:
Stefano Filipazzi, Roberto Svaldi
Publikováno v:
Forum of Mathematics, Sigma, Vol 11 (2023)
Let $(X,B)$ be a pair, and let $f \colon X \rightarrow S$ be a contraction with $-({K_{X}} + B)$ nef over S. A conjecture, known as the Shokurov–Kollár connectedness principle, predicts that $f^{-1} (s) \cap \operatorname {\mathrm {Nklt}}
Externí odkaz:
https://doaj.org/article/58669536371e4940a9b067a1c5716ddf
We show the Jordan property for regional fundamental groups of klt singularities of fixed dimension. Furthermore, we prove the existence of effective simultaneous index one covers for $n$-dimensional klt singularities. We give an application to the s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a45c455dd8972bb5091b2fd374a2dd62
http://hdl.handle.net/2434/937284
http://hdl.handle.net/2434/937284
Autor:
Stefano Filipazzi, Roberto Svaldi
Let $(X,B)$ be a pair, and let $f \colon X \rightarrow S$ be a contraction with $-(K_X + B)$ nef over $S$. A conjecture, known as the Shokurov-Koll\'{a}r connectedness principle, predicts that $f^{-1} (s) \cap \mathrm{Nklt}(X,B)$ has at most two conn
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9c83fb279a8887ab7e4ecf6aeceda7ac
Autor:
Stefano Filipazzi
In this note, we extend the theories of the canonical bundle formula and adjunction to the case of generalized pairs. As an application, we study a particular case of a conjecture by Prokhorov and Shokurov.
Improved the exposition. Added Theorem
Improved the exposition. Added Theorem
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::65ff6fea216228c81d2111a162e13f30
http://arxiv.org/abs/1807.04847
http://arxiv.org/abs/1807.04847
Autor:
Stefano Filipazzi
Publikováno v:
Taiwanese J. Math. 22, no. 4 (2018), 813-850
In this paper, we study the behavior of the sets of volumes of the form $\mathrm{vol}(X,K_X+B+M)$, where $(X,B)$ is a log canonical pair, and $M$ is a nef $\mathbb{R}$-divisor. After a first analysis of some general properties, we focus on the case w
Autor:
Stefano Filipazzi
In this note, using methods introduced by Hacon, McKernan and Xu, we study the accumulation points of volumes of varieties of log general type. First, we show that, if the set of boundary coefficients $\Lambda$ is DCC, closed under limits and contain
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::00196d350886c6955617bf8c668e798a
http://arxiv.org/abs/1804.10971
http://arxiv.org/abs/1804.10971
Autor:
Stefano Filipazzi
We show that there exist smooth surfaces violating Generic Vanishing in any characteristic $p \geq 3$. As a corollary, we recover a result of Hacon and Kov\'acs, producing counterexamples to Generic Vanishing in dimension 3 and higher.
Comment:
Comment:
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::45f3dfb78943a85fc43995381c23fb4d