Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Stefano Della Fiore"'
Publikováno v:
Examples and Counterexamples, Vol 2, Iss , Pp 100051- (2022)
A code C⊆{0,1,2}nis said to be trifferent with length n when for any three distinct elements of C there exists a coordinate in which they all differ. Defining T(n)as the maximum cardinality of trifferent codes with length n, T(n)is unknown for n≥
Externí odkaz:
https://doaj.org/article/19090865bce44ba4b061261f4351cd87
Autor:
Simone Costa, Stefano Della Fiore
A subset $A$ of an abelian group $G$ is sequenceable if there is an ordering $(a_1, \ldots, a_k)$ of its elements such that the partial sums $(s_0, s_1, \ldots, s_k)$, given by $s_0 = 0$ and $s_i = \sum_{j=1}^i a_i$ for $1 \leq i \leq k$, are distinc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::42535deddf5eb8e82aba7d4828d30f02
https://hdl.handle.net/11379/566366
https://hdl.handle.net/11379/566366
Publikováno v:
ISIT
For fixed integers $b\geq k$, the problem of perfect $(b,k)$-hashing asks for the asymptotic growth of largest subsets of $\{1,2,\ldots,b\}^n$ such that for any $k$ distinct elements in the set, there is a coordinate where they all differ. An importa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::74336f21902478bb593668b86643f0d8
For fixed integers $b\geq k$, a problem of relevant interest in computer science and combinatorics is that of determining the asymptotic growth, with $n$, of the largest set for which a $(b, k)$-hash family of $n$ functions exists. Equivalently, dete
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1afefd8ab8a3874a00a58ae8876d807a
Publikováno v:
Examples and Counterexamples, Vol 2, Iss, Pp 100051-(2022)
A code $\mathcal{C} \subseteq \{0, 1, 2\}^n$ is said to be trifferent with length $n$ when for any three distinct elements of $\mathcal{C}$ there exists a coordinate in which they all differ. Defining $\mathcal{T}(n)$ as the maximum cardinality of tr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::604a866a4477f7e08bbdf15bedd85472
http://hdl.handle.net/11379/555076
http://hdl.handle.net/11379/555076