Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Stefan von Cavallar"'
Autor:
Chathurika Hettiarachchige, Stefan von Cavallar, Timothy Lynar, Roslyn I Hickson, Manoj Gambhir
Publikováno v:
PLoS ONE, Vol 13, Iss 12, p e0208203 (2018)
BackgroundDengue is the fastest spreading vector-borne viral disease, resulting in an estimated 390 million infections annually. Precise prediction of many attributes related to dengue is still a challenge due to the complex dynamics of the disease.
Externí odkaz:
https://doaj.org/article/9a1c3bafb2494fc29394dacadf773a14
Publikováno v:
Pattern Recognition. 139:109484
Autor:
Umer Akbar, Ali Akbari, Parastoo Alinia, Francesco Amato, Sara Amendola, Ertan Balaban, Christopher Beach, Mattia Bertschi, Fabian Braun, Laura Caldani, Francesca Camera, Alexander J. Casson, Gert Cauwenberghs, Gozde Cay, Yu M. Chi, Nicholas Constant, Marco Di Rienzo, Xiaorong Ding, Rassoul Diouf, Muhammad Farooq, Timothy Fazio, Damien Ferrario, Juan Manuel Fontana, Todd J. Freeborn, Elsa Genzoni, Hassan Ghasemzadeh, Maysam Ghovanloo, Sohmyung Ha, Stefan Harrer, Roozbeh Jafari, Sundaresan Jayaraman, Yuqi Jiang, Panagiotis Kassanos, Meysam Keshavarz, Chul Kim, Amanda Koh, Ilkka Korhonen, Yuichi Kurita, Tomohiro Kuroda, Mathieu Lemay, Steffen Leonhardt, Markus Lüken, Ningqi Luo, Kunal Mankodiya, Andre L. Mansano, Gaetano Marrocco, Gustavo C. Martins, Atsuji Masuda, Patrick P. Mercier, Carolina Miozzi, Mahtab Mirmomeni, Jens Mühlsteff, Simone Nappi, Cecilia Occhiuzzi, Rita Paradiso, Jakub Parak, Sungmee Park, Nicolai Petkov, Sara Piccirillo, Carmen C.Y. Poon, Martin Proença, Petia Radeva, Vignesh Ravichandran, Philippe Renevey, Bruno Gil Rosa, Edward Sazonov, Wouter A. Serdijn, Josep Sola, Mark Stoopman, Hideya Takahashi, Estefania Talavera, Mark Ulbrich, Vishesh Vikas, Stefan von Cavallar, Hui Wang, Guang-Zhong Yang, Yuan Ting Zhang, Yali Zheng
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1fbbaee43814e3c1249901870bb49472
https://doi.org/10.1016/b978-0-12-819246-7.09990-3
https://doi.org/10.1016/b978-0-12-819246-7.09990-3
Wearable sensors are being used in clinical settings to monitor the condition of patients as well as in recreational environments for routine health monitoring. Some of the most advanced clinical applications include monitoring patients with Parkinso
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f9b0144eab20725c1f8940400d786224
https://doi.org/10.1016/b978-0-12-819246-7.00012-7
https://doi.org/10.1016/b978-0-12-819246-7.00012-7
Autor:
Jeffrey Rogers, Tian Hao, Deval Mehta, Umar Asif, Stefan Harrer, Stefan von Cavallar, Erhan Bilal
Publikováno v:
CVPR Workshops
This paper presents a novel deep learning enabled, video based analysis framework for assessing the Unified Parkinsons Disease Rating Scale (UPDRS) that can be used in the clinic or at home. We report results from comparing the performance of the fra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0963cfb9a2f4eeacb53fab5dd8cd02b7
Autor:
Roslyn I. Hickson, Manoj Gambhir, Chathurika K. H. Hettiarachchige, Stefan von Cavallar, Timothy M. Lynar
Publikováno v:
PLoS ONE
PLoS ONE, Vol 13, Iss 12, p e0208203 (2018)
PLoS ONE, Vol 13, Iss 12, p e0208203 (2018)
BackgroundDengue is the fastest spreading vector-borne viral disease, resulting in an estimated 390 million infections annually. Precise prediction of many attributes related to dengue is still a challenge due to the complex dynamics of the disease.
Publikováno v:
Studies in health technology and informatics. 216
Advanced techniques in machine learning combined with scalable "cloud" computing infrastructure are driving the creation of new and innovative health diagnostic applications. We describe a service and application for performing image training and rec
Autor:
Matthew, Davis, Stefan, von Cavallar, Kelly L, Wyres, Matthias, Reumann, Martin J, Sepulveda, Priscilla, Rogers
Publikováno v:
Studies in health technology and informatics. 205
The supplementation of medical data with environmental data offers rich new insights that can improve decision-making within health systems and the healthcare profession. In this study, we simulate disease incidence for various scenarios using a math