Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Stefan Schliebs"'
Autor:
Nikolas Kasabov, Paras N. Prasad, Folarin Erogbogbo, Patrick Gladding, Michelle Jamieson, Seif El Jack, Dariusz Korcyk, Banu Gopalan, Katie Smart, Mark T. Swihart, Mark Webster, Stefan Schliebs, Raphael Hu, Mia Jüllig, Ralph A.H. Stewart, Katherine Bakeev, Linda Liang, Silas G. Villas-Boas, Irene Zeng, Jasmine L. May
Publikováno v:
Theranostics
Scopus-Elsevier
Scopus-Elsevier
Metabolomic profiling is ideally suited for the analysis of cardiac metabolism in healthy and diseased states. Here, we show that systematic discovery of biomarkers of ischemic preconditioning using metabolomics can be translated to potential nanothe
Publikováno v:
Neurocomputing. 107:3-10
In a previous work (Mohemmed et al., Method for training a spiking neuron to associate input-output spike trains) [1] we have proposed a supervised learning algorithm based on temporal coding to train a spiking neuron to associate input spatiotempora
Autor:
Stefan Schliebs, Nikola Kasabov
Publikováno v:
Evolving Systems. 4:87-98
This paper provides a comprehensive literature survey on the evolving Spiking Neural Network (eSNN) architecture since its introduction in 2006 as a further extension of the ECoS paradigm introduced by Kasabov in 1998. We summarize the functioning of
Publikováno v:
Ecological Modelling. 222:1657-1665
Because of increasing transport and trade there is a growing threat of marine invasive species being introduced into regions where they do not presently occur. So that the impacts of such species can be mitigated, it is important to predict how indiv
Publikováno v:
Neural Networks. 22:623-632
This study introduces a quantum-inspired spiking neural network (QiSNN) as an integrated connectionist system, in which the features and parameters of an evolving spiking neural network are optimized together with the use of a quantum-inspired evolut
Autor:
Stefan Schliebs, Nikola Kasabov
Publikováno v:
Springer Handbook of Bio-/Neuroinformatics ISBN: 9783642305733
This chapter reviews recent developments in the area of spiking neural networks (SNN) and summarizes the main contributions to this research field. We give background information about the functioning of biological neurons, discuss the most important
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d92c49a723240155a5635b8c5e506c73
https://doi.org/10.1007/978-3-642-30574-0_37
https://doi.org/10.1007/978-3-642-30574-0_37
Autor:
Takayoshi Ikeda, Susan P. Worner, Stefan Schliebs, Joel Pitt, Gwenaël G. R. Leday, Snjezana Soltic, Muriel Gevrey
Publikováno v:
Springer Handbook of Bio-/Neuroinformatics ISBN: 9783642305733
Ecologists face rapidly accumulating environmental data form spatial studies and from large-scale field experiments such that many now specialize in information technology. Those scientists carry out interdisciplinary research in what is known as eco
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::889e20ffad1fb5ae48c2e6942ab2e79b
https://doi.org/10.1007/978-3-642-30574-0_35
https://doi.org/10.1007/978-3-642-30574-0_35
Publikováno v:
Engineering Applications of Neural Networks ISBN: 9783642410123
EANN (1)
EANN (1)
This paper employs a Liquid State Machine (LSM) to classify inertial sensor data collected from horse riders into activities of interest. Since LSM was shown to be an effective classifier for spatio-temporal data and efficient hardware implementation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::87e4232f8199eebc183a8f84515ecc2b
https://doi.org/10.1007/978-3-642-41013-0_24
https://doi.org/10.1007/978-3-642-41013-0_24
Publikováno v:
Neural Information Processing ISBN: 9783642420504
ICONIP (3)
ICONIP (3)
The paper presents a method for the classification of EEG data recorded in two cognitive scenarios, a relaxing and memory task. The method uses a reservoir of spiking neurons that are activated by the spatio-temporal EEG data. The states of the reser
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::21207f4d941d056a4085da6c9c9ac56a
https://doi.org/10.1007/978-3-642-42051-1_8
https://doi.org/10.1007/978-3-642-42051-1_8
Autor:
Stefan Schliebs, Doug Hunt
Publikováno v:
Neural Information Processing ISBN: 9783642344770
ICONIP (4)
ICONIP (4)
This paper proposes to use a Liquid State Machine (LSM) to classify inertial sensor data collected from horse riders into activities of interest. LSM was shown to be an effective classifier for spatio-temporal data and efficient hardware implementati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::74022c77cdaad36402c7b8c714996a25
https://doi.org/10.1007/978-3-642-34478-7_76
https://doi.org/10.1007/978-3-642-34478-7_76