Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Stefan Lemurell"'
Publikováno v:
Journal of Number Theory. 158:1-22
We prove that in most cases the Jacquet-Langlands correspondence between newforms for Hecke congruence groups and newforms for quaternion orders is a bijection. Our proof covers almost all cases where the Hecke congruence group is of cocompact type,
Autor:
J. Brian Conrey, Stefan Lemurell, Sally Koutsoliotas, Hiroyuki Yoshida, Jonathan Bober, Michael O. Rubinstein, David W. Farmer, Akio Fujii
Publikováno v:
Bober, J W, Conrey, J B, Farmer, D W, Fujii, A, Koutsoliotas, S, Lemurell, S, Rubinstein, M & Yoshida, H 2015, ' The highest lowest zero of general L-functions ', Journal of Number Theory, vol. 147, pp. 364-373 . https://doi.org/10.1016/j.jnt.2014.07.023
Stephen D. Miller showed that, assuming the generalized Riemann Hypothesis, every entire $L$-function of real archimedian type has a zero in the interval $\frac12+i t$ with $-t_0 < t < t_0$, where $t_0\approx 14.13$ corresponds to the first zero of t
Publikováno v:
Mathematische Zeitschrift. 258:161-184
We construct lattices with quadratic structure over the integers in quadratic number fields having the property that the rank of the quadratic structure is constant and equal to the rank of the lattice in all reductions modulo maximal ideals. We char
We describe a procedure for determining the existence, or non-existence, of an algebraic variety of a given conductor via an analytic calculation involving L-functions. The procedure assumes that the Hasse-Weil L-function of the variety satisfies its
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9af290a19a0f8224cd97f6f7280aa51a
http://arxiv.org/abs/1502.00850
http://arxiv.org/abs/1502.00850
Autor:
Stefan Lemurell, David W. Farmer
Publikováno v:
Mathematics of Computation. 74:1967-1983
We describe numerical calculations which examine the Phillips-Sarnak conjecture concerning the disappearance of cusp forms on a noncompact finite volume Riemann surface $S$ under deformation of the surface. Our calculations indicate that if the Teich
We describe a practical method for finding an L-function without first finding the associated underlying object. The procedure involves using the Euler product and the approximate functional equation in a new way. No use is made of the functional equ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c75e49480fa6cbdca248f3741c516bb5