Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Stefan, Haag"'
Autor:
Stefan Haag
Um die Aufbau- und Ablauforganisation einer Unternehmung, etwa im Rahmen eines Managementsystems, ganzheitlich integriert und eventuell sogar simulierbar abzubilden, müssen Modelle übergreifenden Regeln folgen und zueinander kompatibel sein. Das hi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::18575ccc3edd87a82da6fd13e59c6cb9
https://doi.org/10.30844/akwi_2022_25
https://doi.org/10.30844/akwi_2022_25
Publikováno v:
ECMS 2022 Proceedings edited by Ibrahim A. Hameed, Agus Hasan, Saleh Abdel-Afou Alaliyat.
Timed dynamic systems can be modeled and simulated with Petri nets using very different approaches. In Clock Pulse Models (CPM), one marking represents exactly one moment in time and all enabled transitions fire simultaneously according to a global c
Autor:
Wolfgang Koch, Stefan Haag, Bharanidhar Duraisamy, Felix Govaers, Martin Fritzsche, Jurgen Dickmann
Publikováno v:
2021 21st International Radar Symposium (IRS).
This paper presents a new adaptive multi-hypothesis clustering method for extended objects on radar data. The proposed method provides several clustering hypotheses per object for a given measurement set efficiently by ordering the data set similar t
Autor:
Bharanidhar Duraisamy, Wolfgang Koch, Jurgen Dickmann, Martin Fritzsche, Felix Govaers, Stefan Haag
Publikováno v:
2020 IEEE Radar Conference (RadarConf20).
This paper introduces BAAS, a new Extended Object Tracking (EOT) and fusion-based label annotation framework for radar detections in autonomous driving. Our framework utilizes Bayesian-based tracking, smoothing and eventually fusion methods to provid
Autor:
Reiner Marchthaler, Constantin Blessing, Bharanidhar Duraisamy, Stefan Haag, Wolfgang Koch, Jurgen Dickmann, Martin Fritzsche
Publikováno v:
MFI
This paper presents the Online Adaptive Fuser: OAFuser, a novel method for online adaptive estimation of motion and measurement uncertainties for efficient tracking and fusion by applying a system of several estimators for ongoing noise along with th
Autor:
Martin Fritzsche, Jurgen Dickmann, Julius F. Tilly, Ole Schumann, Bharanidhar Duraisamy, Stefan Haag, Fabio Weishaupt
Publikováno v:
FUSION
Reliable tracking of road users plays a critical part on the way to safe automated driving. In this paper, a machine learning based tracking approach on radar data is presented utilizing the radar target point clouds from multiple time steps as input
Autor:
Carlo Simon, Stefan Haag
Publikováno v:
ECMS
Autor:
Wolfgang Koch, Martin Fritzsche, Felix Govaers, Stefan Haag, Jurgen Dickmann, Bharanidhar Duraisamy
Publikováno v:
SDF
Multiple Extended Object Tracking in autonomous driving scenarios must be applicable in highly varying environments such as highway scenarios as well as in urban and rural environments. In this paper, a flexible UKF-based Interacting Multiple Motion