Zobrazeno 1 - 10
of 193
pro vyhledávání: '"Starkov, A. V."'
Let $\mathcal{H}_0$ denote the set of all sense-preserving harmonic mappings $f=h+\overline{g}$ in the unit disk $\ID$, normalized with $h(0)=g(0)=g'(0)=0$ and $h'(0)=1$. In this paper, we investigate some properties of certain subclasses of $\mathca
Externí odkaz:
http://arxiv.org/abs/2303.07022
Autor:
Ramirez B., Javier A., Krasnikov, Dmitry V., Gubarev, Vladimir V., Novikov, Ilya V., Kondrashov, Vladislav A., Starkov, Andrei V., Krivokorytov, Mikhail S., Medvedev, Vyacheslav V., Gladush, Yuriy G., Nasibulin, Albert G.
Publikováno v:
In Carbon 15 October 2022 198:364-370
One of the aims of this article is to provide a class of polynomial mappings for which the Jacobian conjecture is true. Also, we state and prove several global univalence theorems and present a couple of applications of them.
Comment: 14 pages;
Comment: 14 pages;
Externí odkaz:
http://arxiv.org/abs/1705.10921
Let $\mathcal{S}_H^0$ denote the class of all functions $f(z)=h(z)+\overline{g(z)}=z+\sum^\infty_{n=2} a_nz^n +\overline{\sum^\infty_{n=2} b_nz^n}$ that are sense-preserving, harmonic and univalent in the open unit disk $|z|<1$. The coefficient conje
Externí odkaz:
http://arxiv.org/abs/1703.02371
In this article, we determine the radius of univalence of sections of normalized univalent harmonic mappings for which the range is convex (resp. starlike, close-to-convex, convex in one direction). Our result on the radius of univalence of section $
Externí odkaz:
http://arxiv.org/abs/1701.06041
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper, we prove necessary and sufficient conditions for a sense-preserving harmonic function to be absolutely convex in the open unit disk. We also estimate the coefficient bound and obtain growth, covering and area theorems for absolutely co
Externí odkaz:
http://arxiv.org/abs/1605.02171
In this paper, we obtain a new characterization for univalent harmonic mappings and obtain a structural formula for the associated function which defines the analytic $\Phi$-like functions in the unit disk. The new criterion stated in this article fo
Externí odkaz:
http://arxiv.org/abs/1510.04886
For a univalent smooth mapping $f$ of the unit disk $\ID$ of complex plane onto the manifold $f(\ID)$, let $d_f(z_0)$ be the radius of the largest univalent disk on the manifold $f(\ID)$ centered at $f(z_0)$ ($|z_0|<1$). The main aim of the present a
Externí odkaz:
http://arxiv.org/abs/1501.04194
Publikováno v:
Power Technology & Engineering; May2024, Vol. 58 Issue 1, p39-48, 10p