Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Stéphane Andrieux"'
Autor:
Stéphane Andrieux
Publikováno v:
Comptes Rendus. Mécanique. 351:59-81
Autor:
Stéphane Andrieux
Publikováno v:
Journal of Mechanics of Materials and Structures. 10:219-237
Publikováno v:
Comptes Rendus Mécanique. 343:331-343
A general solution method to the Cauchy Problem (CP) formulated for incremental elastoplasticity is designed. The method extends previous works of the authors on the solution to Cauchy Problems for linear operators and convex nonlinear elasticity in
Autor:
Stéphane Andrieux
Publikováno v:
Revue Générale Nucléaire. :34-37
Publikováno v:
Inverse Problems in Science and Engineering
Inverse Problems in Science and Engineering, Taylor & Francis, 2013, 22 (1), pp.199-212. ⟨10.1080/17415977.2013.836191⟩
Inverse Problems in Science and Engineering, 2013, 22 (1), pp.199-212. ⟨10.1080/17415977.2013.836191⟩
Inverse Problems in Science and Engineering, Taylor & Francis, 2013, 22 (1), pp.199-212. ⟨10.1080/17415977.2013.836191⟩
Inverse Problems in Science and Engineering, 2013, 22 (1), pp.199-212. ⟨10.1080/17415977.2013.836191⟩
International audience; This paper deals with an energy method coupled with total variation regularization and an adequate stopping criterion in order to solve a Cauchy problem for the heat equation when using noisy data. First, the Cauchy problem is
Publikováno v:
International Journal for Numerical Methods in Engineering. 95:271-287
SUMMARY This paper focuses on the regularization of noisy Cauchy data and unknown boundary conditions approximated by the energy-like minimization method. After providing considerations necessary for the numerical analysis leading to an adequate stop
Autor:
Thouraya Baranger, Stéphane Andrieux
Publikováno v:
Journal of the Mechanics and Physics of Solids
Journal of the Mechanics and Physics of Solids, Elsevier, 2016, 97, page 140-155. ⟨10.1016/j.jmps.2016.02.008⟩
Journal of the Mechanics and Physics of Solids, Elsevier, 2016, 97, page 140-155. ⟨10.1016/j.jmps.2016.02.008⟩
International audience; The paper is devoted to the derivation of a numerical method for expanding available mechanical fields (stress vector and displacements) on a part of the boundary of a solid into its interior and up to unreachable parts of its
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3d630362b39d49c60fda27c759ba06fb
https://hal.archives-ouvertes.fr/hal-01737698
https://hal.archives-ouvertes.fr/hal-01737698
Autor:
Thouraya Baranger, Stéphane Andrieux
Publikováno v:
Comptes rendus de l’Académie des sciences. Série IIb, Mécanique
Comptes rendus de l’Académie des sciences. Série IIb, Mécanique, Elsevier, 2012, 340, pp.565-574. ⟨10.1016/j.crme.2012.06.002⟩
Comptes rendus de l’Académie des sciences. Série IIb, Mécanique, 2012, 340, pp.565-574. ⟨10.1016/j.crme.2012.06.002⟩
Comptes rendus de l’Académie des sciences. Série IIb, Mécanique, Elsevier, 2012, 340, pp.565-574. ⟨10.1016/j.crme.2012.06.002⟩
Comptes rendus de l’Académie des sciences. Série IIb, Mécanique, 2012, 340, pp.565-574. ⟨10.1016/j.crme.2012.06.002⟩
International audience; On présente dans cette Note une méthode dʼidentification du front dʼune fissure débouchant à la surface dʼun solide élastique, à partir de la donnée des composantes tangentielles du champ de déplacement sur une part
Autor:
Thouraya Baranger, Stéphane Andrieux
Publikováno v:
Structural and Multidisciplinary Optimization. 35:141-152
An energy error functional is introduced in the context of the ill-posed problem of boundary data recovery in linear elasticity, which is well known as the Cauchy problem. The problem is converted into one of optimization; the computation of the grad
Autor:
Thouraya Baranger, Stéphane Andrieux
Publikováno v:
Inverse Problems
Inverse Problems, IOP Publishing, 2015, 31 (11), page 1-20
Inverse Problems, IOP Publishing, 2015, 31 (11), page 1-20. ⟨10.1088/0266-5611/31/11/115003⟩
Inverse Problems, IOP Publishing, 2015, 31 (11), page 1-20
Inverse Problems, IOP Publishing, 2015, 31 (11), page 1-20. ⟨10.1088/0266-5611/31/11/115003⟩
International audience; The problem of expanding given (measured) fields at the surface of a solid within the solid and up to inaccessible parts of its boundary is addressed for a nonlinear hyperelastic medium. The problem is formulated as a nonlinea
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3d59fa4aacd2a25d5a40918f6fdd3837
https://hal.archives-ouvertes.fr/hal-01735941
https://hal.archives-ouvertes.fr/hal-01735941