Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Sreeraj Rajendran"'
Publikováno v:
IEEE Transactions on Cognitive Communications and Networking. 8:111-120
Despite several beneficial applications, unfortunately, drones are also being used for illicit activities such as drug trafficking, firearm smuggling or to impose threats to security-sensitive places like airports and nuclear power plants. The existi
Publikováno v:
2023 25th International Conference on Advanced Communication Technology (ICACT).
Autor:
Joppe W. Bos, Michiel De Vis, Charles Faes, Nicolas Gonzalez-Deleito, Anna Hristoskova, Sarah Klein, Sreeraj Rajendran
Publikováno v:
2022 IEEE Sustainable Power and Energy Conference (iSPEC).
Learning the unknown: Improving modulation classification performance in unseen scenarios Erma Perenda∗, Sreeraj Rajendran∗, Gerome Bovet†, Sofie Pollin∗and Mariya Zheleva‡{erma.perenda, sreeraj.rajendran, sofie.pollin}@esat.kuleuven.be, ge
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2f70bfdac497c5beb84c085fa5b6ebc8
Autor:
Sreeraj Rajendran, Sofie Pollin
Publikováno v:
Spectrum Sharing
Publikováno v:
2021 International Conference on Information and Communication Technology Convergence (ICTC).
Publikováno v:
Radioengineering. 2021 vol. 30, č. 3, s. 547-555. ISSN 1210-2512
Radioengineering, Vol 30, Iss 3, Pp 547-555 (2021)
Radioengineering, Vol 30, Iss 3, Pp 547-555 (2021)
The calibration of the angularly dependent array error is a challenging task for signal processing. In this paper, we propose a neural network (NN)-based two-dimensional (2D) calibration method for a linear array. Firstly, the array steering vectors
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7185c48f5f87088acf941c0c940b067a
https://hdl.handle.net/11012/201827
https://hdl.handle.net/11012/201827
Publikováno v:
IEEE Transactions on Cognitive Communications and Networking. 5:637-647
Detecting anomalous behavior in wireless spectrum is a demanding task due to the sheer complexity of the electromagnetic spectrum use. Wireless spectrum anomalies can take a wide range of forms from the presence of an unwanted signal in a licensed ba
Publikováno v:
INFOCOM
Automatic Modulation Classification (AMC) is significant for the practical support of a plethora of emerging spectrum applications, such as Dynamic Spectrum Access (DSA) in 5G and beyond, resource allocation, jammer identification, intruder detection
Automatic Modulation Classification (AMC) receives significant interest in the context of current and future wireless communication systems. Deep learning emerged as a powerful AMC tool, as it allows for the joint learning of discriminative features,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::34007fc123b0c02b5178fd782ac14072
https://doi.org/10.36227/techrxiv.14528778
https://doi.org/10.36227/techrxiv.14528778