Zobrazeno 1 - 10
of 317
pro vyhledávání: '"Sprott, J. C."'
Exploring and establishing artificial neural networks with electrophysiological characteristics and high computational efficiency is a popular topic in the field of computer vision. Inspired by the working mechanism of primary visual cortex, pulse-co
Externí odkaz:
http://arxiv.org/abs/2104.07257
Autor:
Elhadj, Zeraoulia, Sprott, J. C.
In this letter we present a method of constructing dynamical systems with any preassigned number of equilibria by adding symmetry to another system with at least one equilibrium point. If the resulting system is chaotic, we call this procedure chaoti
Externí odkaz:
http://arxiv.org/abs/1208.6413
Autor:
Sun, Kehui, Sprott, J. C.
Using the predictor-corrector scheme, the fractional order diffusionless Lorenz system is investigated numerically. The effective chaotic range of the fractional order diffusionless system for variation of the single control parameter is determined.
Externí odkaz:
http://arxiv.org/abs/0907.2077
Autor:
Albers, D. J., Sprott, J. C.
Results regarding probable bifurcations from fixed points are presented in the context of general dynamical systems (real, random matrices), time-delay dynamical systems (companion matrices), and a set of mappings known for their properties as univer
Externí odkaz:
http://arxiv.org/abs/nlin/0510060
An extensive statistical survey of universal approximators shows that as the dimension of a typical dissipative dynamical system is increased, the number of positive Lyapunov exponents increases monotonically and the number of parameter windows with
Externí odkaz:
http://arxiv.org/abs/nlin/0504040
Autor:
Albers, D. J., Sprott, J. C.
This paper examines the most probable route to chaos in high-dimensional dynamical systems in a very general computational setting. The most probable route to chaos in high-dimensional, discrete-time maps is observed to be a sequence of Neimark-Sacke
Externí odkaz:
http://arxiv.org/abs/nlin/0408017
Autor:
Albers, D. J., Sprott, J. C.
This report investigates the dynamical stability conjectures of Palis and Smale, and Pugh and Shub from the standpoint of numerical observation and lays the foundation for a stability conjecture. As the dimension of a dissipative dynamical system is
Externí odkaz:
http://arxiv.org/abs/nlin/0408011
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.