Zobrazeno 1 - 10
of 111
pro vyhledávání: '"Sprüssel, P."'
We consider a generalised model of a random simplicial complex, which arises from a random hypergraph. Our model is generated by taking the downward-closure of a non-uniform binomial random hypergraph, in which for each $k$, each set of $k+1$ vertice
Externí odkaz:
http://arxiv.org/abs/2005.07103
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We consider $k$-dimensional random simplicial complexes that are generated from the binomial random $(k+1)$-uniform hypergraph by taking the downward-closure, where $k\geq 2$. For each $1\leq j \leq k-1$, we determine when all cohomology groups with
Externí odkaz:
http://arxiv.org/abs/1806.04566
For integers $g,m \geq 0$ and $n>0$, let $S_{g}(n,m)$ denote the graph taken uniformly at random from the set of all graphs on $\{1,2, \ldots, n\}$ with exactly $m=m(n)$ edges and with genus at most $g$. We use counting arguments to investigate the c
Externí odkaz:
http://arxiv.org/abs/1709.00864
Let $\mathbb{S}_g$ be the orientable surface of genus $g$. We prove that the component structure of a graph chosen uniformly at random from the class $\mathcal{S}_g(n,m)$ of all graphs on vertex set $[n]=\{1,\dotsc,n\}$ with $m$ edges embeddable on $
Externí odkaz:
http://arxiv.org/abs/1708.07671
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We consider simplicial complexes that are generated from the binomial random 3-uniform hypergraph by taking the downward-closure. We determine when this simplicial complex is homologically connected, meaning that its zero-th and first homology groups
Externí odkaz:
http://arxiv.org/abs/1604.00842
Let $\mathbb{S}_g$ be the orientable surface of genus $g$. We show that the number of vertex-labelled cubic multigraphs embeddable on $\mathbb{S}_g$ with $2n$ vertices is asymptotically $c_g n^{5(g-1)/2-1}\gamma^{2n}(2n)!$, where $\gamma$ is an algeb
Externí odkaz:
http://arxiv.org/abs/1603.01440
Autor:
Kang, Mihyun, Sprüssel, Philipp
We give a full characterisation of the symmetries of unlabelled triangulations and derive a constructive decomposition of unlabelled triangulations depending on their symmetries. As an application of these results we can deduce a complete enumerative
Externí odkaz:
http://arxiv.org/abs/1509.00581
Autor:
Diestel, Reinhard, Sprüssel, Philipp
This paper is the last part of a comprehensive survey of a newly emerging field: a topological approach to the study of locally finite graphs that crucially incorporates their ends. Topological arcs and circles, which may pass through ends, assume th
Externí odkaz:
http://arxiv.org/abs/1004.0110