Zobrazeno 1 - 10
of 168
pro vyhledávání: '"Spitzer, Wolfgang"'
Entanglement entropy in the ground state of non-interacting massless Dirac fermions in dimension one
We present a novel proof of a formula of Casini and Huerta for the entanglement entropy of the ground state of non-interacting massless Dirac fermions in dimension one localized to (a union of) intervals and generalize it to the case of R\'enyi entro
Externí odkaz:
http://arxiv.org/abs/2404.07068
Autor:
Pfeiffer, Paul, Spitzer, Wolfgang
We consider fermionic ground states of the Landau Hamiltonian, $H_B$, in a constant magnetic field of strength $B>0$ in $\mathbb R^2$ at some fixed Fermi energy $\mu>0$, described by the Fermi projection $P_B:= 1(H_B\le \mu)$. For some fixed bounded
Externí odkaz:
http://arxiv.org/abs/2307.01699
Autor:
Pfeiffer, Paul, Spitzer, Wolfgang
We study the asymptotic growth of the entanglement entropy of ground states of non-interacting (spinless) fermions in $\mathbb R^3$ subject to a non-zero, constant magnetic field perpendicular to a plane. As for the case with no magnetic field we fin
Externí odkaz:
http://arxiv.org/abs/2209.09820
Publikováno v:
pp. 477-508 in: "Toeplitz Operators and Random Matrices - In Memory of Harold Widom"; Editors: E. Basor, A. B\"ottcher, T. Erhardt, C. A. Tracy; Operator Theory: Advances and Applications vol. 289, Birkh\"auser/Springer Nature, Cham, 2022
We study the local and (bipartite) entanglement R\'enyi entropies of the free Fermi gas in multi-dimensional Euclidean space $\mathbb{R}^d$ in thermal equilibrium. We prove positivity of the entanglement entropies with R\'enyi index $\gamma\leq1$ for
Externí odkaz:
http://arxiv.org/abs/2201.11087
Publikováno v:
Commun. Math. Phys. 381, 673-705 (2021)
We consider the ideal Fermi gas of indistinguishable particles without spin but with electric charge, confined to a Euclidean plane $\mathbb R^2$ perpendicular to an external constant magnetic field of strength $B>0$. We assume this (infinite) quantu
Externí odkaz:
http://arxiv.org/abs/2007.06316
Publikováno v:
J. Stat. Phys. 182(3), 55, 41pp. (2021). Open Access online since: 06 March 2021
We extend two rigorous results of Aizenman, Lebowitz, and Ruelle in their pioneering paper of 1987 on the Sherrington-Kirkpatrick spin-glass model without external magnetic field to the quantum case with a "transverse field" of strength $b$. More pre
Externí odkaz:
http://arxiv.org/abs/1912.06633
Publikováno v:
Journal de Math. Pures et Appli. (2020)
In this paper we discuss Bose-Einstein condensation (BEC) in systems of pairwise non-interacting bosons in random potentials in $d$ dimensions. Working in a rather general framework, we provide a "gap condition" which is sufficient to conclude existe
Externí odkaz:
http://arxiv.org/abs/1911.03200
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Statistical Physics (2019)
We study Bose-Einstein condensation (BEC) in the Luttinger-Sy model. Here, Bose point particles in one spatial dimension do not interact with each other, but, through a positive (repulsive) point potential with impurities which are randomly located a
Externí odkaz:
http://arxiv.org/abs/1808.10811
Publikováno v:
Annales Henri Poincar\'e (2019)
We study bosons on the real line in a Poisson random potential (Luttinger--Sy model) with contact interaction in the thermodynamic limit at absolute zero temperature. We prove that generalized Bose--Einstein condensation (BEC) occurs almost surely if
Externí odkaz:
http://arxiv.org/abs/1804.07697