Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Spener, Adrian"'
Autor:
Rupp, Fabian, Spener, Adrian
Publikováno v:
J. Evol. Equ. 24, 59 (2024)
We study the evolution of curves with fixed length and clamped boundary conditions moving by the negative $L^2$-gradient flow of the elastic energy. For any initial curve lying merely in the energy space we show existence and parabolic smoothing of t
Externí odkaz:
http://arxiv.org/abs/2009.06991
We study long-time existence and asymptotic behavior for the $L^2$-gradient flow of the Willmore energy, under the condition that the initial datum is a torus of revolution. We show that if an initial datum has Willmore energy below $8\pi$ then the s
Externí odkaz:
http://arxiv.org/abs/2005.13500
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We study Bakry-\'Emery curvature-dimension inequalities for non-local operators on the one-dimensional lattice and prove that operators with finite second moment have finite dimension. Moreover, we show that a class of operators related to the fracti
Externí odkaz:
http://arxiv.org/abs/1903.00517
We show that the fractional Laplacian on $\mathbb{R}^d$ fails to satisfy the Bakry-\'Emery curvature-dimension inequality $CD(\kappa,N)$ for all curvature bounds $\kappa\in \mathbb{R}$ and all finite dimensions $N>0$.
Comment: 14 pages, 2 figure
Comment: 14 pages, 2 figure
Externí odkaz:
http://arxiv.org/abs/1903.00521
Autor:
Müller, Marius, Spener, Adrian
We examine the L^2-gradient flow of Euler's elastic energy for closed curves in hyperbolic space and prove convergence to the global minimizer for initial curves with elastic energy bounded by 16. We show the sharpness of this bound by constructing a
Externí odkaz:
http://arxiv.org/abs/1901.03157
Autor:
Dall'Acqua, Anna, Spener, Adrian
We consider closed curves in the hyperbolic space moving by the $L^2$-gradient flow of the elastic energy and prove well-posedness and long time existence. Under the additional penalisation of the length we show subconvergence to critical points. A m
Externí odkaz:
http://arxiv.org/abs/1710.09600
In this paper we consider the elastic energy for open curves in Euclidean space subject to clamped boundary conditions and obtain the \L ojasiewicz-Simon gradient inequality for this energy functional. Thanks to this inequality we can prove that a (s
Externí odkaz:
http://arxiv.org/abs/1604.07559
Autor:
Dall'Acqua, Anna, Spener, Adrian
Publikováno v:
数理解析研究所講究録. 2082:109-124
In the recent work [6] the authors studied the elastic flow in the hyperbolic plane for closed curves. Subconvergence to elastica was established under an additional length penalization. In this paper we show that this penalization is not necessary f
Autor:
Spener, Adrian1 adrian.spener@uni-ulm.de
Publikováno v:
Mathematische Nachrichten. Sep2017, Vol. 290 Issue 13, p2052-2077. 26p.