Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Soumya Vasisht"'
Publikováno v:
IEEE Open Journal of Control Systems, Vol 1, Pp 100-112 (2022)
In this paper, we provide sufficient conditions for dissipativity and local asymptotic stability of discrete-time dynamical systems parametrized by deep neural networks. We leverage the representation of neural networks as pointwise affine maps, thus
Externí odkaz:
https://doaj.org/article/cd7b89bb71994d95b1ef04382540f209
Estimating Driver Response Rates to Variable Message Signage at Seattle-Tacoma International Airport
Publikováno v:
Findings (2022)
We apply Bayesian Linear Regression to estimate the response rate of drivers to variable message signs at Seattle-Tacoma International Airport, or SEA. Our approach uses vehicle speed and flow data measured at the entrances of the arrival and departu
Externí odkaz:
https://doaj.org/article/0230db25a7794347bbca272f8dd70244
Publikováno v:
IFAC-PapersOnLine. 56:228-233
Publikováno v:
2022 Resilience Week (RWS).
Publikováno v:
IFAC-PapersOnLine. 54:14-19
We present a differentiable predictive control (DPC) methodology for learning constrained control laws for unknown nonlinear systems. DPC poses an approximate solution to multiparametric programming problems emerging from explicit nonlinear model pre
Autor:
Soumya Vasisht, Aowabin Rahman, Thiagarajan Ramachandran, Arnab Bhattacharya, Veronica Adetola
Publikováno v:
2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS).
Autor:
Soumya Vasisht, Mehran Mesbahi
Publikováno v:
Journal of Guidance, Control, and Dynamics. 43:1540-1549
Autor:
Draguna Vrabie, Himanshu Sharma, Sen Huang, Veronica Adetola, Arnab Bhattacharya, Soumya Vasisht
Publikováno v:
ACC
Sequential approaches to system and control design produce sub-optimal solutions due to unidirectional coupling between the system and control variables, i.e., the system design prescribes the control approach but not vice versa. A critical challenge
Publikováno v:
ACC
Neural network modules conditioned by known priors can be effectively trained and combined to represent systems with nonlinear dynamics. This work explores a novel formulation for data-efficient learning of deep control-oriented nonlinear dynamical m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::04704fd8b73fb58578e1cfa465d13c52
In this paper, we provide sufficient conditions for dissipativity and local asymptotic stability of discrete-time dynamical systems parametrized by deep neural networks. We leverage the representation of neural networks as pointwise affine maps, thus
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::899c810ffd4cf8946da35441b290a2ef
http://arxiv.org/abs/2011.13492
http://arxiv.org/abs/2011.13492