Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Soumen Nandi"'
Publikováno v:
Discrete Applied Mathematics
Discrete Applied Mathematics, 2023, 329, pp.140-154. ⟨10.1016/j.dam.2023.01.013⟩
Discrete Applied Mathematics, 2023, 329, pp.140-154. ⟨10.1016/j.dam.2023.01.013⟩
International audience; Pushing a vertex in an oriented graph means reversing the direction of all the arcs incident to that vertex, resulting in another oriented graph. The pushable chromatic number of an oriented graph $\overrightarrow{G}$ is the o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::93da7e63abcc00f36105efefcb6dc2b5
https://hal.science/hal-03531789v2/document
https://hal.science/hal-03531789v2/document
Publikováno v:
Information Processing Letters. 182:106386
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031066771
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::55f5af8ff531d342215cffb27559c9c9
https://doi.org/10.1007/978-3-031-06678-8_32
https://doi.org/10.1007/978-3-031-06678-8_32
Publikováno v:
Fundamenta Informaticae. 164:119-138
Relationship between Coping styles and Conversion Disorder Phenomenology: A Study from Eastern India
Autor:
Soumen Nandi, Kanika Das, Somsubhra Chattopadhyay, Rajarshi Chakravarty, Shuvendu Datta, Supantha Chatterjee
Publikováno v:
Indian Journal of Public Health Research & Development.
Background: Conversion disorder is a Functional Neurological Disorder under DSM-5 classification whicharises mainly due to psychological conflicts and without any underlying clinical findings and/or biochemicalabnormalities .Studies in the past have
Publikováno v:
Trends in Mathematics ISBN: 9783030838225
An (n, m)-graph is a graph with n types of arcs and m types of edges. The chromatic number of an (n, m)-graph G is the minimum number of colors to color the vertices of G such that if we identify the vertices of the same color we get a simple (n, m)-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::55ad04eb46e368e310375964dee6b261
https://doi.org/10.1007/978-3-030-83823-2_119
https://doi.org/10.1007/978-3-030-83823-2_119
Publikováno v:
Discrete Mathematics
Discrete Mathematics, Elsevier, In press
Discrete Mathematics, 2022, 345, pp.112664. ⟨10.1016/j.disc.2021.112664⟩
Discrete Mathematics, Elsevier, 2022, 345, pp.112664. ⟨10.1016/j.disc.2021.112664⟩
Discrete Mathematics, Elsevier, In press
Discrete Mathematics, 2022, 345, pp.112664. ⟨10.1016/j.disc.2021.112664⟩
Discrete Mathematics, Elsevier, 2022, 345, pp.112664. ⟨10.1016/j.disc.2021.112664⟩
A signed graph ( G , σ ) is a graph G along with a function σ : E ( G ) → { + , − } . A closed walk of a signed graph is positive (resp., negative) if it has an even (resp., odd) number of negative edges, counting repetitions. A homomorphism of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c27d123b5c4c48f3c1e287e67efb49a2
http://arxiv.org/abs/2009.12059
http://arxiv.org/abs/2009.12059
Publikováno v:
Algorithms and Discrete Applied Mathematics ISBN: 9783030392185
CALDAM
CALDAM
A vertex subset R of an oriented graph \(\overrightarrow{G}\) is a relative oriented clique if each pair of non-adjacent vertices of R is connected by a directed 2-path. The relative oriented clique number \(\omega _{ro}(\overrightarrow{G})\) of \(\o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::659a4d7a77ecde70593e63210c2fe87a
https://doi.org/10.1007/978-3-030-39219-2_22
https://doi.org/10.1007/978-3-030-39219-2_22
Publikováno v:
Discrete Applied Mathematics. 258:276-278
An error is spotted in the statement of Theorem 1.3 of our published article titled “On oriented cliques with respect to push operation” (Discrete Applied Mathematics 2017). The theorem provided an exhaustive list of 16 minimal (up to spanning su
Publikováno v:
Discrete Applied Mathematics. 228:32-40
An n-L(1,2,3)labeling of a simple graph G=(V,E) is a mapping f:V{0,1,,n} such that f(u)f(v)i when the distance between u and v is i for i=1,2,3. The L(1,2,3)labeling span(1,2,3)(G) of a graph G is the minimum n such that G admits an n-L(1,2,3) labeli