Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Soulimani, Sammy Alaoui"'
Inspired by Schmidt's work on twisted cubics, we study wall crossings in Bridgeland stability, starting with the Hilbert scheme $\mathrm{Hilb}^{2m+2}(\mathbb{P}^3)$ parametrizing pairs of skew lines and plane conics union a point. We find two walls.
Externí odkaz:
http://arxiv.org/abs/2308.03820
Autor:
Porru, Paola, Soulimani, Sammy Alaoui
We construct two divisors in the moduli space $\mathcal{A}_4 ^{(1,1,2,2)}$ and we check their invariance and non-invariance under the canonical involution introduced by C. Birkenhake and H. Lange.
Externí odkaz:
http://arxiv.org/abs/1704.05247
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Soulimani, Sammy Alaoui
Bridgeland stability conditions are powerful tools for studying derived categories, with several applications to algebraic geometry. They were introduced by Bridgeland in 2002 [Bri07], who was motivated by Douglas’ work on Π-stability of D-branes
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::514986b4e63b492dc1e1ad2151e293ac
https://hdl.handle.net/11250/3058550
https://hdl.handle.net/11250/3058550