Zobrazeno 1 - 10
of 108
pro vyhledávání: '"Soto Axel J"'
Autor:
Ramirez-Orta, Juan, Xamena, Eduardo, Maguitman, Ana, Soto, Axel J., Zanoto, Flavia P., Milios, Evangelos
Abstract. When writing an academic paper, researchers often spend considerable time reviewing and summarizing papers to extract relevant citations and data to compose the Introduction and Related Work sections. To address this problem, we propose QuO
Externí odkaz:
http://arxiv.org/abs/2306.11832
In this paper, we propose a novel method based on character sequence-to-sequence models to correct documents already processed with Optical Character Recognition (OCR) systems. The main contribution of this paper is a set of strategies to accurately
Externí odkaz:
http://arxiv.org/abs/2109.06264
Publikováno v:
Briefings in Bioinformatics, Volume 23, Issue 1, January 2022, bbab365
With the consolidation of deep learning in drug discovery, several novel algorithms for learning molecular representations have been proposed. Despite the interest of the community in developing new methods for learning molecular embeddings and their
Externí odkaz:
http://arxiv.org/abs/2104.02604
Autor:
Sabando, María Virginia, Ulbrich, Pavol, Selzer, Matías, Byška, Jan, Mičan, Jan, Ponzoni, Ignacio, Soto, Axel J., Ganuza, María Luján, Kozlíková, Barbora
In the modern drug discovery process, medicinal chemists deal with the complexity of analysis of large ensembles of candidate molecules. Computational tools, such as dimensionality reduction (DR) and classification, are commonly used to efficiently p
Externí odkaz:
http://arxiv.org/abs/2008.13150
Autor:
Przybyła, Piotr, Soto, Axel J.
Publikováno v:
In Information Processing and Management September 2021 58(5)
Publikováno v:
In Applied Soft Computing Journal December 2019 85
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Supplemental material, sj-pdf-1-jis-10.1177_01655515231160034 for Assessing causality among topics and sentiments: The case of the G20 discussion on Twitter by Mauro Fonseca, Fernando Delbianco, Ana Maguitman and Axel J Soto in Journal of Information
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::30698da9bfaa614e68e4c43f012b4d83
Autor:
Naveiro, Roi, Martínez, María J., Soto, Axel J., Ponzoni, Ignacio, Ríos-Insua, David, Campillo, Nuria E.
Publikováno v:
In Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 2023:263-284