Zobrazeno 1 - 10
of 61
pro vyhledávání: '"Soto, Tomas"'
Wide stable neural networks: Sample regularity, functional convergence and Bayesian inverse problems
Autor:
Soto, Tomás
We study the large-width asymptotics of random fully connected neural networks with weights drawn from $\alpha$-stable distributions, a family of heavy-tailed distributions arising as the limiting distributions in the Gnedenko-Kolmogorov heavy-tailed
Externí odkaz:
http://arxiv.org/abs/2407.03909
We propose to use L\'evy {\alpha}-stable distributions for constructing priors for Bayesian inverse problems. The construction is based on Markov fields with stable-distributed increments. Special cases include the Cauchy and Gaussian distributions,
Externí odkaz:
http://arxiv.org/abs/2212.05555
We consider particle filters with weakly informative observations (or `potentials') relative to the latent state dynamics. The particular focus of this work is on particle filters to approximate time-discretisations of continuous-time Feynman--Kac pa
Externí odkaz:
http://arxiv.org/abs/2203.10037
The trace spaces of Sobolev spaces and related fractional smoothness spaces have been an active area of research since the work of Nikolskii, Aronszajn, Slobodetskii, Babich and Gagliardo among others in the 1950's. In this paper we review the litera
Externí odkaz:
http://arxiv.org/abs/1708.04902
Autor:
Saksman, Eero, Soto, Tomás
We establish trace theorems for function spaces defined on general Ahlfors regular metric spaces $Z$. The results cover the Triebel-Lizorkin spaces and the Besov spaces for smoothness indices $s<1,$ as well as the first order Haj{\l}asz-Sobolev space
Externí odkaz:
http://arxiv.org/abs/1606.08729
Autor:
Soto, Tomás
We establish a new characterization of the homogeneous Besov spaces $\dot{\mathcal B}^{s}_{p,q}(Z)$ with smoothness $s \in (0,1)$ in the setting of doubling metric measure spaces $(Z,d,\mu)$. The characterization is given in terms of a hyperbolic fil
Externí odkaz:
http://arxiv.org/abs/1606.08082
We give a new characterization of (homogeneous) Triebel-Lizorkin spaces $\dot{\mathcal F}^{s}_{p,q}(Z)$ in the smoothness range $0 < s < 1$ for a fairly general class of metric measure spaces $Z$. The characterization uses Gromov hyperbolic fillings
Externí odkaz:
http://arxiv.org/abs/1411.5906
Autor:
Soto, Tomás
In this note, we establish characterizations for the homogeneous Besov-type spaces $\dot{B}^{s,\tau}_{p,q}(\mathbb{R}^n)$ and Triebel-Lizorkin-type spaces $\dot{F}^{s,\tau}_{p,q}(\mathbb{R}^n)$, introduced by Yang and Yuan, through fractional Haj\l a
Externí odkaz:
http://arxiv.org/abs/1304.1587
For $0 < s < 1 < q < \infty$, we characterize the homeomorphisms $\varphi : \real^n \to \real^n$ for which the composition operator $f \mapsto f \circ \varphi$ is bounded on the homogeneous, scaling invariant Besov space $\dot{B}^s_{n/s,q}(\real^n)$,
Externí odkaz:
http://arxiv.org/abs/1209.6477
Autor:
Arias Vilchez, Anthony Wilder, Marcelo Lloclla Soto, Tomas Silvestre, Sanchez Atuncar, Giancarlo
Publikováno v:
International Journal of Advanced Computer Science & Applications; May2024, Vol. 15 Issue 5, p593-600, 8p