Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Soto, Roberto C."'
Let $k$ be an arbitrary field, $\Lambda$ be a $k$-algebra and $V$ be a $\Lambda$-module. When it exists, the universal deformation ring $R(\Lambda,V)$ of $V$ is a $k$-algebra whose local homomorphisms to $R$ parametrize the lifts of $V$ up to $R\otim
Externí odkaz:
http://arxiv.org/abs/2004.11811
Publikováno v:
J. Pure Appl. Algebra 223 (2019), no. 3, 1897-1912
Let $k$ be a field of characteristic $p>0$, and let $W$ be a complete discrete valuation ring of characteristic $0$ that has $k$ as its residue field. Suppose $G$ is a finite group and $G^{\mathrm{ab},p}$ is its maximal abelian $p$-quotient group. We
Externí odkaz:
http://arxiv.org/abs/1612.03703
Autor:
Soto, Roberto C., Wackwitz, Daniel J.
Let k be a field of arbitrary characteristic and let Q be a quiver of finite representation type. In this paper we prove that if M is an indecomposable kQ-module then the universal deformation ring of M over kQ is isomorphic to k.
Externí odkaz:
http://arxiv.org/abs/1604.00578
Publikováno v:
Education Sciences; Sep2024, Vol. 14 Issue 9, p1001, 13p
Publikováno v:
In Journal of Pure and Applied Algebra May 2019 223(5):1897-1912
Publikováno v:
Communications in Algebra. 51:3543-3555
Let $k$ be an arbitrary field, $\Lambda$ be a $k$-algebra and $V$ be a $\Lambda$-module. When it exists, the universal deformation ring $R(\Lambda,V)$ of $V$ is a $k$-algebra whose local homomorphisms to $R$ parametrize the lifts of $V$ up to $R\otim
Autor:
Marzocchi, Alison S, Soto, Roberto C.
Publikováno v:
International Journal of Research in Undergraduate Mathematics Education; August 2023, Vol. 9 Issue: 2 p524-555, 32p
Autor:
Soto, Roberto C., Soto, Melissa
Publikováno v:
Primus: Problems, Resources & Issues in Mathematics Undergraduate Studies; 2023, Vol. 33 Issue 3, p219-232, 14p
Publikováno v:
International Journal of Mathematical Education in Science & Technology; Mar2022, Vol. 53 Issue 3, p698-707, 10p
Autor:
Soto, Roberto C., Marzocchi, Alison S.
Publikováno v:
Primus: Problems, Resources & Issues in Mathematics Undergraduate Studies; 2021, Vol. 31 Issue 3-5, p269-280, 12p