Zobrazeno 1 - 10
of 337
pro vyhledávání: '"Sorokin, A. O."'
Autor:
Sorokin, A. O.
Using Monte Carlo simulations, we consider the lattice version of the $O(N)\otimes O(M)$ sigma model for $2\leq M\leq4$ and $M\leq N \leq8$. We find a continuous transition for $N\geq M+4$. Estimates of the critical exponents for cases of second-orde
Externí odkaz:
http://arxiv.org/abs/2205.07199
Autor:
Sorokin, A. O.
We investigate critical properties of the stacked-$J_1$-$J_2$ Ising model on a cubic lattice. Using Monte Carlo simulations and renormalization group, we find a single phase transition of the first order for $J_2/J_1>1/2$. The renormgroup approach pr
Externí odkaz:
http://arxiv.org/abs/2105.06210
Autor:
Sorokin, A. O.
Using the renormalization group approach, we consider the $O(N)\otimes O(M)$ model in four and more dimensions. We find that independently on $N$ and $M$, for $N\geq M\geq 2$, a transition can be of both the first and second order. In $d>4$, we also
Externí odkaz:
http://arxiv.org/abs/2105.00072
Publikováno v:
Phys. Rev. B 103, 094402 (2021)
It is commonly assumed that a lattice of skyrmions, emerging in two-dimensional non-centrosymmetric magnets in external magnetic fields, can be represented as a sum of three magnetic helices. In order to test this assumption we compare two approaches
Externí odkaz:
http://arxiv.org/abs/2009.13313
We consider multiskyrmion configurations in 2D ferromagnets with Dzyaloshinskii-Moriya (DM) interaction and the magnetic field, using the stereographic projection method. In the absence of DM interaction, $D$, and the field, $B$, the skyrmions do not
Externí odkaz:
http://arxiv.org/abs/1811.01883
Autor:
Sorokin, A. O.
Publikováno v:
JMMM 479, 32 (2019)
Using a simple model of a frustrated helimagnet, the critical behavior is numerically investigated for planar or isotropic spins, and for cases of one or two chiral order parameters. The helical structure in this model arises from the competition bet
Externí odkaz:
http://arxiv.org/abs/1808.04968
Autor:
Sorokin, A. O.
Using extensive Monte Carlo simulations, we investigate the critical properties of domain walls, vortices and $\mathbb{Z}_2$ vortices in the Ising-$O(2)$ and Ising-$O(3)\otimes O(2)$ models. We have consider the nontrivial case when disorder in the I
Externí odkaz:
http://arxiv.org/abs/1808.00132
Autor:
Sorokin, A. O.
Publikováno v:
Ann. Phys. 411, 167952 (2019)
Using extensive Monte Carlo simulations, we test the hypothesis that the density of corresponding topological defects has an universal value at the temperature of a continuous phase transition. We consider several simple two-dimensional models where
Externí odkaz:
http://arxiv.org/abs/1806.09223
Autor:
Sorokin, A. O.
Publikováno v:
Phys. Rev. B 95, 094408 (2017)
Using Monte Carlo simulations, we study thermal and critical properties of two systems, in which domain walls and so-called $Z_2$-vortices as topological defects are presented. The main model is a lattice version of the $O(3)$ principal chiral model.
Externí odkaz:
http://arxiv.org/abs/1612.07525