Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Soprunova, Jenya"'
Autor:
Soprunov, Ivan, Soprunova, Jenya
We prove that every indefinite quadratic form with non-negative integer coefficients is the volume polynomial of a pair of lattice polygons. This solves the discrete version of the Heine-Shephard problem for two bodies in the plane. As an application
Externí odkaz:
http://arxiv.org/abs/2401.06111
Publikováno v:
Involve 17 (2024) 153-162
The lattice size of a lattice polytope is a geometric invariant which was formally introduced in the context of simplification of the defining equation of an algebraic curve, but appeared implicitly earlier in geometric combinatorics. Previous work o
Externí odkaz:
http://arxiv.org/abs/2209.00712
Autor:
Alajmi, Abdulrahman, Soprunova, Jenya
The lattice size $\operatorname{ls_\Delta}(P)$ of a lattice polytope $P$ is a geometric invariant, which was formally introduced in relation to the problem of bounding the total degree and the bi-degree of the defining equation of an algebraic curve,
Externí odkaz:
http://arxiv.org/abs/2207.13124
Autor:
Soprunova, Jenya
Publikováno v:
Electron. J. Combin., 30, No 4, Paper No. 4.45 (2023), 18 pp
The lattice size of a lattice polygon $P$ was introduced and studied by Schicho, and by Castryck and Cools in relation to the problem of bounding the total degree and the bi-degree of the defining equation of an algebraic curve. In this paper we esta
Externí odkaz:
http://arxiv.org/abs/2112.15134
For a given lattice polytope $P$ in $\mathbb{R}^3$, consider the space $\mathcal{L}_P$ of trivariate polynomials over a finite field $\mathbb{F}_q$, whose Newton polytopes are contained in $P$. We give an upper bound for the maximum number of $\mathb
Externí odkaz:
http://arxiv.org/abs/2105.10071
Autor:
Harrison, Anthony, Soprunova, Jenya
The lattice size of a lattice polytope $P$ was defined and studied by Schicho, and Castryck and Cools. They provided an "onion skins" algorithm for computing the lattice size of a lattice polygon $P$ in $\mathbb{R}^2$ based on passing successively to
Externí odkaz:
http://arxiv.org/abs/1709.03451
The lattice size $\operatorname{ls}_{\Delta}(P)$ of a lattice polygon $P$ with respect to the standard simplex $\Delta$ was introduced and studied by Castryck and Cools in the context of simplification of the defining equation of an algebraic curve.
Externí odkaz:
http://arxiv.org/abs/1709.03454
Autor:
Soprunov, Ivan, Soprunova, Jenya
Publikováno v:
European Journal of Combinatorics 58 (2016), pp. 107--117
The Minkowski length of a lattice polytope $P$ is a natural generalization of the lattice diameter of $P$. It can be defined as the largest number of lattice segments whose Minkowski sum is contained in $P$. The famous Ehrhart theorem states that the
Externí odkaz:
http://arxiv.org/abs/1412.4404
Publikováno v:
Linear Algebra and its Applications 475 (2015) 28-44
Let ${\mathcal D}^{k,l}(m,n)$ be the set of all the integer points in the transportation polytope of $kn\times ln$ matrices with row sums $lm$ and column sums $km$. In this paper we find the sharp lower bound on the tropical determinant over the set
Externí odkaz:
http://arxiv.org/abs/1410.3397
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.