Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Sophie Lambert-Lacroix"'
Autor:
Florence Ranchon, Sébastien Chanoine, Sophie Lambert-Lacroix, Jean-Luc Bosson, Alexandre Moreau-Gaudry, Pierrick Bedouch
Publikováno v:
Journal of Medical Internet Research, Vol 25, p e41048 (2023)
BackgroundEuropean national disparities in the integration of data linkage (ie, being able to match patient data between databases) into routine public health activities were recently highlighted. In France, the claims database covers almost the whol
Externí odkaz:
https://doaj.org/article/35642bad73b34bac9629a62ccb685e8e
Publikováno v:
BMC Bioinformatics, Vol 19, Iss 1, Pp 1-13 (2018)
Abstract Background To address high-dimensional genomic data, most of the proposed prediction methods make use of genomic data alone without considering clinical data, which are often available and known to have predictive value. Recent studies sugge
Externí odkaz:
https://doaj.org/article/9a84dced69eb4386acb4e201a27294a1
Publikováno v:
Journal of Statistical Software, Vol 36, Iss 04 (2010)
To simulate fractional Brownian motion indexed by a manifold poses serious numerical problems: storage, computing time and choice of an appropriate grid. We propose an effective and fast method, valid not only for fractional Brownian fields indexed b
Externí odkaz:
https://doaj.org/article/6ba0f6fe770c414ca85600f34b4db7c5
Publikováno v:
Journal of Statistical Software, Vol 23, Iss 1 (2007)
To simulate Gaussian fields poses serious numerical problems: storage and computing time. The midpoint displacement method is often used for simulating the fractional Brownian fields because it is fast. We propose an effective and fast method, valid
Externí odkaz:
https://doaj.org/article/bf1ca8b72d494c228c538df1926474d4
Publikováno v:
Statistical Methods and Applications
Statistical Methods and Applications, 2023, ⟨10.1007/s10260-023-00685-2⟩
Statistical Methods and Applications, 2023, ⟨10.1007/s10260-023-00685-2⟩
International audience; To deal with repeated data or longitudinal data, linear mixed effects models are commonly used. A classical parameter estimation method is the Expectation–Maximization (EM) algorithm. In this paper, we propose three new Part
Autor:
Florence Ranchon, Sébastien Chanoine, Sophie Lambert-Lacroix, Jean-Luc Bosson, Alexandre Moreau-Gaudry, Pierrick Bedouch
BACKGROUND European national disparities in the integration of data linkage (ie, being able to match patient data between databases) into routine public health activities were recently highlighted. In France, the claims database covers almost the who
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::945deac2887e0bd2b2925a4b1790d338
https://doi.org/10.2196/preprints.41048
https://doi.org/10.2196/preprints.41048
Autor:
Florence Ranchon, Sébastien Chanoine, Sophie Lambert-Lacroix, Jean-Luc Bosson, Alexandre Moreau-Gaudry, Pierrick Bedouch
Publikováno v:
International Journal of Medical Informatics. 172:104983
Autor:
Pascal Jézéquel, Sophie Lambert-Lacroix, Aurélie Gaultier, Faouda Ben Azzouz, Pierre Gillois, Jean-Michel Nguyen, Luisa Silva, Alexandre Moreau-Gaudry, Philippe Juin, Mario Campone, Daniel Antonioli
Publikováno v:
Bioinformatics
Bioinformatics, 2021, 37 (15), pp.2165-2174. ⟨10.1093/bioinformatics/btab074⟩
Bioinformatics, 2021, 37 (15), pp.2165-2174. ⟨10.1093/bioinformatics/btab074⟩
Motivation The principle of Breiman's random forest (RF) is to build and assemble complementary classification trees in a way that maximizes their variability. We propose a new type of random forest that disobeys Breiman’s principles and involves b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ad6667b006ec70861e990481c176117c
https://www.hal.inserm.fr/inserm-03546813
https://www.hal.inserm.fr/inserm-03546813
Publikováno v:
Reliability Engineering & System Safety. 206:107312
The understanding of many physical and engineering problems involves running complex computational models. Such models take as input a high number of numerical and physical explanatory variables. The information on these underlying input parameters i
Publikováno v:
BMC Bioinformatics
BMC Bioinformatics, 2018, 19 (1), ⟨10.1186/s12859-018-2311-2⟩
BMC Bioinformatics, BioMed Central, 2018, 19 (1), ⟨10.1186/s12859-018-2311-2⟩
BMC Bioinformatics, Vol 19, Iss 1, Pp 1-13 (2018)
BMC Bioinformatics, 2018, 19 (1), ⟨10.1186/s12859-018-2311-2⟩
BMC Bioinformatics, BioMed Central, 2018, 19 (1), ⟨10.1186/s12859-018-2311-2⟩
BMC Bioinformatics, Vol 19, Iss 1, Pp 1-13 (2018)
International audience; Prediction from high-dimensional genomic data is an active field in today's medical research. Most of the proposed prediction methods make use of genomic data alone without considering established clinical data that often are
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e1671723e1614f7a0d0800c192bd823b
https://hal.science/hal-01405101v3/file/Bazzoli_et_al-2018-BMC_Bioinformatics.pdf
https://hal.science/hal-01405101v3/file/Bazzoli_et_al-2018-BMC_Bioinformatics.pdf