Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Sophie Frisch"'
Publikováno v:
Biomolecules, Vol 12, Iss 4, p 589 (2022)
Cochlear hair cell damage and spiral ganglion neuron (SGN) degeneration are the main causes of sensory neural hearing loss. Cochlear implants (CIs) can replace the function of the hair cells and stimulate the SGNs electrically. The condition of the S
Externí odkaz:
https://doaj.org/article/5c23924b7f6c435e83d218911b996bc3
Regarding non-unique factorization of integer-valued polynomials over a discrete valuation domain $(R,M)$ with finite residue field, it is known that there exist absolutely irreducible elements, that is, irreducible elements all of whose powers facto
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0316390312e8142842bcba8fea85c9cd
This volume has been curated from two sources: presentations from the Conference on Rings and Polynomials, Technische Universität Graz, Graz, Austria, July 19 –24, 2021, and papers intended for presentation at the Fourth International Meeting on
Autor:
Sophie Frisch
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783030434151
Let D be a Dedekind domain with finite residue fields and \(\mathcal {F}\) a finite set of maximal ideals of D. Let \(r_0\), \(\ldots \), \(r_n\) be distinct elements of D, pairwise incongruent modulo \(P^{k_{\scriptscriptstyle P}}\) for each \(P\in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c6219f2e3bb265315257e14434ffa839
https://doi.org/10.1007/978-3-030-43416-8_10
https://doi.org/10.1007/978-3-030-43416-8_10
Autor:
Sophie Frisch
Publikováno v:
Journal of Pure and Applied Algebra. 222:2089-2098
Let $D$ be a domain and $M$ a maximal ideal of $D$. The ring of integer-valued polynomials on a subset $E$ of $D$, as well as more general rings of functions from $E$ to $D$, can be viewed as subrings of the product $D^E=\prod_{e\in E}D$. We investig
Autor:
Sarah Nakato, Sophie Frisch
Publikováno v:
Communications in Algebra
An irreducible element of a commutative ring is absolutely irreducible if no power of it has more than one (essentially different) factorization into irreducibles. In the case of the ring $\text{Int}(D)=\{f\in K[x]\mid f(D)\subseteq D\}$, of integer-
The ring of dual numbers over a ring $R$ is $R[\alpha] = R[x]/(x^2)$, where $\alpha$ denotes $x+(x^2)$. For any finite commutative ring $R$, we characterize null polynomials and permutation polynomials on $R[\alpha]$ in terms of the functions induced
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2d3aefbeded71cc31aa24df480e9a326
http://arxiv.org/abs/1910.00238
http://arxiv.org/abs/1910.00238
Autor:
Sophie Frisch
Publikováno v:
Monatshefte für Mathematik. 184:201-215
There are two kinds of polynomial functions on matrix algebras over commutative rings: those induced by polynomials with coefficients in the algebra itself and those induced by polynomials with scalar coefficients. In the case of algebras of upper tr
This volume presents a collection of articles highlighting recent developments in commutative algebra and related non-commutative generalizations. It also includes an extensive bibliography and lists a substantial number of open problems that point t
Publikováno v:
Rings, Polynomials, and Modules
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9ecde79a246de2499a4e58d556d60ca7
https://doi.org/10.1007/978-3-319-65874-2
https://doi.org/10.1007/978-3-319-65874-2