Zobrazeno 1 - 10
of 149
pro vyhledávání: '"Soo Hak Sung"'
Publikováno v:
Journal of Inequalities and Applications, Vol 2021, Iss 1, Pp 1-12 (2021)
Abstract The Spitzer’s law is obtained for the maximum partial sums of widely orthant dependent random variables under more optimal moment conditions.
Externí odkaz:
https://doaj.org/article/d25ecf26a64745d9a0588c7e34d4cc49
Autor:
Pingyan Chen, Soo Hak Sung
Publikováno v:
Journal of Inequalities and Applications, Vol 2021, Iss 1, Pp 1-16 (2021)
Abstract The complete convergence results for weighted sums of widely orthant-dependent random variables are obtained. A strong law of large numbers for weighted sums of widely orthant-dependent random variables is also obtained. Our results extend a
Externí odkaz:
https://doaj.org/article/3996beeda592409fa2c1947c6a740d40
Strong laws for weighted sums of random variables satisfying generalized Rosenthal type inequalities
Publikováno v:
Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-8 (2020)
Abstract Let 1 ≤ p < 2 $1\le p
Externí odkaz:
https://doaj.org/article/2f8ca21e1f6b429f947ed98a6b34a7c3
Autor:
Pingyan Chen, Soo Hak Sung
Publikováno v:
Journal of Inequalities and Applications, Vol 2018, Iss 1, Pp 1-16 (2018)
Abstract Let r≥1 $r\geq1$, 1≤p0 $\alpha, \beta>0$ with 1/α+1/β=1/p $1/\alpha+1/\beta=1/p$. Let {ank,1≤k≤n,n≥1} $\{a_{nk}, 1\leq k\leq n,n\geq1\}$ be an array of constants satisfying supn≥1n−1∑k=1n|ank|αrp $\alpha>rp$, we provide mo
Externí odkaz:
https://doaj.org/article/c3922d009d35425dafaefd09501da6c3
Publikováno v:
Journal of Inequalities and Applications, Vol 2017, Iss 1, Pp 1-14 (2017)
Abstract Baum and Katz (Trans. Am. Math. Soc. 120:108-123, 1965) obtained convergence rates in the Marcinkiewicz-Zygmund law of large numbers. Their result has already been extended to the short-range dependent linear processes by many authors. In th
Externí odkaz:
https://doaj.org/article/a2905adf42e64303909665df20ac08db
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2016 (2016)
Let p≥1/α and 1/2p. We give necessary and sufficient conditions for complete moment convergence of the form ∑n=1∞n(p-v)α-2E∑i=1naniXi-εnα+v0, where 0
Externí odkaz:
https://doaj.org/article/8b7e2b6e1aa543d6bd03407212815b66
Publikováno v:
Abstract and Applied Analysis, Vol 2014 (2014)
We improve and generalize the result of Stout (1974, Theorem 4.1.3). In particular, the sharp moment conditions are obtained and some well-known results can be obtained as special cases of the main result. The method of the proof is completely differ
Externí odkaz:
https://doaj.org/article/c204eacb02434fea9fbd5d354ce34137
Autor:
Soo Hak Sung
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 23, Iss 11, Pp 789-794 (2000)
Let {Xni} be an array of rowwise independent B-valued random elements and {an} constants such that 0
Externí odkaz:
https://doaj.org/article/c35988f98ebf491d9bfeab28e4bc1f53
Autor:
Soo Hak Sung
Publikováno v:
Abstract and Applied Analysis, Vol 2011 (2011)
A rate of complete convergence for weighted sums of arrays of rowwise independent random variables was obtained by Sung and Volodin (2011). In this paper, we extend this result to negatively associated and negatively dependent random variables. Simil
Externí odkaz:
https://doaj.org/article/92316d258dd04cd78fecdaccacdd4282
Autor:
Soo Hak Sung
Publikováno v:
Journal of Inequalities and Applications, Vol 2010 (2010)
Using exponential inequalities, Wu et al. (2009) and Wang et al. (2010) obtained asymptotic approximations of inverse moments for nonnegative independent random variables and nonnegative negatively orthant dependent random variables, respectively. In
Externí odkaz:
https://doaj.org/article/421ce557ef0a44c8a235c82f4b5069c0