Zobrazeno 1 - 10
of 153
pro vyhledávání: '"Song, Kyeong"'
We consider nonlocal equations of the type \[ (-\Delta_{p})^{s}u = \mu \quad \text{in }\Omega, \] where $\Omega \subset \mathbb{R}^{n}$ is either a bounded domain or the whole $\mathbb{R}^{n}$, $\mu$ is a Radon measure on $\Omega$, $0
Externí odkaz:
http://arxiv.org/abs/2405.11747
We study gradient regularity for mixed local-nonlocal problems modelled upon \[ -\Delta_p u +(-\Delta_p)^su=\mu\qquad\text{for} \quad 2-\tfrac{1}{n}
Externí odkaz:
http://arxiv.org/abs/2401.04549
We investigate elliptic irregular obstacle problems with $p$-growth involving measure data. Emphasis is on the strongly singular case $1 < p \le 2-1/n$, and we obtain several new comparison estimates to prove gradient potential estimates in an intrin
Externí odkaz:
http://arxiv.org/abs/2309.09835
We investigate the De Giorgi-Nash-Moser theory for minimizers of mixed local and nonlocal functionals modeled after \[ v \mapsto \int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\dfrac{|v(x)-v(y)|^{p}}{|x-y|^{n+sp}}\,dxdy+\int_{\Omega}a(x)|Dv|^{q}\,dx, \] w
Externí odkaz:
http://arxiv.org/abs/2301.06234
Publikováno v:
In Journal of Differential Equations 25 January 2025 416 Part 2:1528-1563
We prove local boundedness and H\"older continuity for weak solutions to nonlocal double phase problems concerning the following fractional energy functional \[ \int_{\mathbb{R}^n}\int_{\mathbb{R}^n} \frac{|v(x)-v(y)|^p}{|x-y|^{n+sp}} + a(x,y)\frac{|
Externí odkaz:
http://arxiv.org/abs/2108.09623
Publikováno v:
In Journal of Materials Research and Technology May-June 2024 30:7981-7987
Autor:
Song, Kyeong
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 May 2025 545(2)
Autor:
Byun, Sun-Sig, Song, Kyeong
Publikováno v:
In Journal of Differential Equations 5 December 2023 375:769-795
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.