Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Sompong Chuysurichay"'
Autor:
Wannisa Apairat, Sompong Chuysurichay
Publikováno v:
Songklanakarin Journal of Science and Technology (SJST), Vol 45, Iss 2, Pp 308-313 (2023)
For any positive integer 𝑛 ≥ 2, we give necessary and sufficient conditions of the existence of the Moore-Penrose inverse of any square matrix over the ring of integers modulo 𝑛. In particular, the formula for the Moore-Penrose inverse of an
Externí odkaz:
https://doaj.org/article/49b4f2fb9bc94646acc68695502b833a
Publikováno v:
Songklanakarin Journal of Science and Technology (SJST), Vol 44, Iss 5, Pp 1179-1184 (2022)
An element a in a ring R is said to be of (m, k)-type if a m = a k where m and k are positive integers with m > k ≥ 1. Let Xn(m, k) be the set of all (m, k)-type elements, X * n(m, k) be the set of all nonzero (m, k)-type elements, and Sn(m, k
Externí odkaz:
https://doaj.org/article/9c15297f72384706ae760db01c0eea9d
Autor:
Wannisa Apairat, Sompong Chuysurichay
Publikováno v:
Songklanakarin Journal of Science and Technology (SJST), Vol 40, Iss 5, Pp 1061-1065 (2018)
We give necessary and sufficient conditions for the existence of the Moore-Penrose inverse of an element in a ring with involution. If R is a ring with involution, we also investigate the existence of the Moore-Penrose inverse of the product 1 2
Externí odkaz:
https://doaj.org/article/40932e9011484f06b068bd6e3f96eaa8
Autor:
Mike Boyle, Sompong Chuysurichay
We study the mapping class group of a nontrivial irreducible shift of finite type: the group of flow equivalences of its mapping torus modulo isotopy. This group plays for flow equivalence the role that the automorphism group plays for conjugacy. It
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9a8491f419d0bbd66a6f1eb7d60caeb0
http://arxiv.org/abs/1704.03916
http://arxiv.org/abs/1704.03916
Autor:
Sompong Chuysurichay
We give sufficient conditions for a positive stochastic matrix to be similar and strong shift equivalent over $\mathbb{R}_+$ to a positive doubly stochastic matrix through matrices of the same size. We also prove that every positive stochastic matrix
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c31530a15f9ef79c1b1ea1665edab15a