Zobrazeno 1 - 10
of 158
pro vyhledávání: '"Soltan, V."'
We improve our earlier upper bound on the numbers of antipodal pairs of points among $n$ points in ${\mathbb{R}}^3$, to $2n^2/5+O(n^c)$, for some $c<2$. We prove that the minimal number of antipodal pairs among $n$ points in convex position in ${\mat
Externí odkaz:
http://arxiv.org/abs/2103.13182
Autor:
Soltan, V.
We describe convex quadric surfaces in n dimensions and characterize them as convex surfaces with quadric sections by a continuous family of hyperplanes.
Comment: 14 pages, 2 figures
Comment: 14 pages, 2 figures
Externí odkaz:
http://arxiv.org/abs/1005.5090
Autor:
Soltan, V.
Extending results of Suss and Hadwiger (proved by them for the case of convex bodies and positive ratios), we show that compact (respectively, closed) convex sets in the Euclidean space of dimension n are homothetic provided for any given integer m b
Externí odkaz:
http://arxiv.org/abs/0903.2836
We improve our earlier upper bound on the numbers of antipodal pairs of points among $n$ points in ${\mathbb{R}}^3$, to $2n^2/5+O(n^c)$, for some $c
Comment: 48 pages. New material added, from Proposition 2.10 till Theorem 2.21, with proofs
Comment: 48 pages. New material added, from Proposition 2.10 till Theorem 2.21, with proofs
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::47f7bbc77782ecd16d4c519effab4a8b
http://arxiv.org/abs/2103.13182
http://arxiv.org/abs/2103.13182
Autor:
Soltan, V. *
Publikováno v:
In Expositiones Mathematicae 2005 23(1):47-63
Autor:
Martini, H., Soltan, V.
Publikováno v:
In Discrete Mathematics 2005 290(2):221-228
Autor:
Soltan, V.
Publikováno v:
In Expositiones Mathematicae 2004 22(4):301-315
Autor:
SOLTAN, V.
Publikováno v:
Extracta Mathematicae; 2021, Vol. 36 Issue 2, p241-278, 38p
Autor:
SOLTAN, V.
Publikováno v:
Extracta Mathematicae; 2021, Vol. 36 Issue 1, p81-98, 18p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.