Zobrazeno 1 - 10
of 147
pro vyhledávání: '"Solel, Baruch"'
Autor:
Helmer, Leonid, Solel, Baruch
Let $E$ be a finite directed graph with no sources or sinks and write $X_E$ for the graph correspondence. We study the $C^*$-algebra $C^*(E,Z):=\mathcal{T}(X_E,Z)/\mathcal{K}$ where $\mathcal{T}(X_E,Z)$ is the $C^*$-algebra generated by weighted shif
Externí odkaz:
http://arxiv.org/abs/2108.05601
Autor:
Helmer, Leonid, Solel, Baruch
We study the $C^*$-algebra $\mathcal{T}/\mathcal{K}$ where $\mathcal{T}$ is the $C^*$-algebra generated by $d$ weighted shifts on the Fock space of $\mathbb{C}^d$, $\mathcal{F}(\mathbb{C}^d)$, ( where the weights are given by a sequence $\{Z_k\}$ of
Externí odkaz:
http://arxiv.org/abs/2006.10372
Publikováno v:
Dilations of unitary tuples. J. London Math. Soc., 104: 2053-2081 (2021)
We study the space of all $d$-tuples of unitaries $u=(u_1,\ldots, u_d)$ using dilation theory and matrix ranges. Given two $d$-tuples $u$ and $v$ generating C*-algebras $\mathcal A$ and $\mathcal B$, we seek the minimal dilation constant $c=c(u,v)$ s
Externí odkaz:
http://arxiv.org/abs/2006.01869
Autor:
Solel, Baruch
The techniques developed by Popescu, Muhly-Solel and Good for the study of algebras generated by weighted shifts are applied to generalize results of Sarkar and of Bhattacharjee-Eschmeier-Keshari-Sarkar concerning dilations and invariant subspaces fo
Externí odkaz:
http://arxiv.org/abs/2003.03753
Publikováno v:
J. Funct. Anal. 274:11 (2018), 3197-3253
To every convex body $K \subseteq \mathbb{R}^d$, one may associate a minimal matrix convex set $\mathcal{W}^{\textrm{min}}(K)$, and a maximal matrix convex set $\mathcal{W}^{\textrm{max}}(K)$, which have $K$ as their ground level. The main question t
Externí odkaz:
http://arxiv.org/abs/1706.05654
A matrix convex set is a set of the form $\mathcal{S} = \cup_{n\geq 1}\mathcal{S}_n$ (where each $\mathcal{S}_n$ is a set of $d$-tuples of $n \times n$ matrices) that is invariant under UCP maps from $M_n$ to $M_k$ and under formation of direct sums.
Externí odkaz:
http://arxiv.org/abs/1601.07993
We describe how noncommutative function algebras built from noncommutative functions in the sense of \cite{K-VV2014} may be studied as subalgebras of homogeneous $C^{*}$-algebras.
Externí odkaz:
http://arxiv.org/abs/1510.09189
Autor:
Muhly, Paul S., Solel, Baruch
Let $\mathcal{T}_{+}(E)$ be the tensor algebra of a $W^{*}$-correspondence $E$ over a $W^{*}$-algebra $M$. In earlier work, we showed that the completely contractive representations of $\mathcal{T}_{+}(E)$, whose restrictions to $M$ are normal, are p
Externí odkaz:
http://arxiv.org/abs/1507.02115
Autor:
Muhly, Paul S., Solel, Baruch
Let $H^{\infty}(E)$ be the Hardy algebra of a $W^{*}$-correspondence $E$ over a $W^{*}$-algebra $M$. Then the ultraweakly continuous completely contractive representations of $H^{\infty}(E)$ are parametrized by certain sets $\mathcal{AC}(\sigma)$ ind
Externí odkaz:
http://arxiv.org/abs/1210.2964
Autor:
Muhly, Paul S., Solel, Baruch
We extend our Nevanlinna-Pick theorem for Hardy algebras and their representations to cover interpolation at the absolutely continuous points of the boundaries of their discs of representations. The Lyapunov order plays a crucial role in our analysis
Externí odkaz:
http://arxiv.org/abs/1107.0552