Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Soldatov, Vitalii"'
Solvability of linear boundary-value problems for ordinary differential systems in the space $C^{n}$
Autor:
Soldatov, Vitalii
We study linear boundary-value problems for systems of first-order ordinary differential equations with the most general boundary conditions in the normed spaces of continuously differentiable functions on a finite closed interval. The boundary condi
Externí odkaz:
http://arxiv.org/abs/2412.20876
Autor:
Soldatov, Vitalii
In the paper we develop a general theory of solvability of linear inhomogeneous boundary-value problems for systems of first-order ordinary differential equations in spaces of smooth functions on a finite interval. This problems are set with boundary
Externí odkaz:
http://arxiv.org/abs/2412.05613
Publikováno v:
Methods Funct. Anal. Topology, Vol. 26 (2020), no. 2, 119-125
We consider a wide class of linear boundary-value problems for systems of $r$-th order ordinary differential equations whose solutions range over the normed complex space $(C^{(n)})^m$ of $n\geq r$ times continuously differentiable functions $y:[a,b]
Externí odkaz:
http://arxiv.org/abs/2005.01806
Autor:
Masliuk, Hanna, Soldatov, Vitalii
Publikováno v:
Methods Funct. Anal. Topology, Vol. 24 (2018), no. 2, 143-151
We study the most general class of linear boundary-value problems for systems of $r$-th order ordinary differential equations whose solutions range over the complex H\"older space $C^{n+r,\alpha}$, with $0\leq n\in\mathbb{Z}$ and $0<\alpha\leq1$. We
Externí odkaz:
http://arxiv.org/abs/1802.02019
Publikováno v:
Methods Funct. Anal. Topology, Vol. 22 (2016), no. 4, 375-386
We consider the most general class of linear boundary-value problems for ordinary differential systems, of order $r\geq1$, whose solutions belong to the complex space $C^{(n+r)}$, with $0\leq n\in\mathbb{Z}$. The boundary conditions can contain deriv
Externí odkaz:
http://arxiv.org/abs/1610.07996
Publikováno v:
Electron. J. Qual. Theory Differ. Equa, Vol. 2016 (2016), No. 87, pp. 1-16
We introduce the most general class of linear boundary-value problems for systems of first-order ordinary differential equations whose solutions belong to the complex H\"older space $C^{n+1,\alpha}$, with $0\leq n\in\mathbb{Z}$ and $0\leq\alpha\leq1$
Externí odkaz:
http://arxiv.org/abs/1604.07029