Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Sokhobiddin Akhatkulov"'
Publikováno v:
Abstract and Applied Analysis, Vol 2014 (2014)
We prove that a critical circle homeomorphism with infinite number of break points without periodic orbits is conjugated to the linear rotation by a quasisymmetric map if and only if its rotation number is of bounded type. And we also prove that any
Externí odkaz:
https://doaj.org/article/42ba32c49865403fbb327e7fd03d334b
Publikováno v:
Ann. Funct. Anal. 10, no. 4 (2019), 562-569
Let $T_{1}$ and $T_{2}$ be two piecewise smooth circle homeomorphisms with countably many break points and identical irrational rotation number. We provide a sufficient condition for $C^{1}$ -smoothness of the conjugation between $T_{1}$ and $T_{2}$
Publikováno v:
Far East Journal of Mathematical Sciences (FJMS). 103:659-669
Publikováno v:
Sains Malaysiana. 46:1341-1346
In this paper we prove the existence of ϒ-fixed point for a multidimensional nonlinear mappings F : Xk → X defined on the partially ordered metric spaces and satisfying (ψ, θ, ϕ)-weak contractive conditions. Moreover, we prove the uniqueness of
Publikováno v:
Bulletin of the Malaysian Mathematical Sciences Society. 41:1607-1622
Let $$f_1$$ and $$f_2$$ be two orientation-preserving circle homeomorphisms with the same irrational rotation number $$\rho $$ and each with a single break point $$b_1$$ and $$b_2$$ , respectively. Suppose that the derivatives $$Df_1$$ and $$Df_2$$ s
Publikováno v:
Far East Journal of Mathematical Sciences (FJMS). 101:675-688
Let f be a circle homeomorphism with countably many break points that is, differentiable except in countably many points where the derivatives have a jump. Assuming its rotation number ρ to be irrational, we provide a necessary condition for the abs
Publikováno v:
The Journal of Nonlinear Sciences and Applications. 10:48-59
Publikováno v:
International Journal of Apllied Mathematics. 32
Publikováno v:
International Journal of Mathematical Analysis. 10:1221-1228
Publikováno v:
International Journal of Pure and Apllied Mathematics. 112
In this paper we study a class of continuous functions satisfying a certain Zyg-mund condition dependent on a parameter γ > 0. It shown that the modulus of continuity of such functions is O(δ(log 1/δ)1-γ) if ∈ (0, 1) and O(δ(log log 1/δ )) if