Zobrazeno 1 - 10
of 67
pro vyhledávání: '"Soicher, Leonard H."'
Autor:
Bailey, R. A., Soicher, Leonard H.
Publikováno v:
Journal of Statistical Planning and Inference 213 (2021) 282-291
For integers $n>2$ and $k>0$, an $(n\times n)/k$ semi-Latin square is an $n\times n$ array of $k$-subsets (called blocks) of an $nk$-set (of treatments), such that each treatment occurs once in each row and once in each column of the array. A semi-La
Externí odkaz:
http://arxiv.org/abs/2008.10552
We determine that there is no partial geometry ${\cal G}$ with parameters $(s,t,\alpha)=(4,27,2)$. The existence of such a geometry has been a challenging open problem of interest to researchers for almost 40 years. The particular interest in ${\cal
Externí odkaz:
http://arxiv.org/abs/1607.03372
Publikováno v:
Electron. J. Combin. 25 (2018), no. 4, #P4.15
We determine new upper bounds for the clique numbers of strongly regular graphs in terms of their parameters. These bounds improve on the Delsarte bound for infinitely many feasible parameter tuples for strongly regular graphs, including infinitely m
Externí odkaz:
http://arxiv.org/abs/1604.08299
Autor:
Soicher, Leonard H.
It is known that, up to isomorphism, there is a unique distance-regular graph $\Delta$ with intersection array {32,27;1,12} (equivalently, $\Delta$ is the unique strongly regular graph with parameters (105,32,4,12)). Here we investigate the distance-
Externí odkaz:
http://arxiv.org/abs/1512.05976
Publikováno v:
In Journal of Combinatorial Theory, Series A April 2018 155:27-41
Autor:
Soicher, Leonard H.
Publikováno v:
In Journal of Algebra 1 January 2015 421:260-267
Autor:
Soicher, Leonard H.
Publikováno v:
In Discrete Mathematics 2011 311(13):1136-1141
Autor:
Soicher, Leonard H.
Publikováno v:
In Journal of Combinatorial Theory, Series A 2010 117(7):799-809
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
McSorley, John P., Soicher, Leonard H.
Publikováno v:
In European Journal of Combinatorics 2007 28(2):567-571