Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Sohrab Ferdowsi"'
Autor:
Vishal Govindahari, Rémy Dornier, Sohrab Ferdowsi, Christophe Moser, Irmela Mantel, Francine Behar-Cohen, Laura Kowalczuk
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-13 (2024)
Abstract This study aims to correlate adaptive optics-transscleral flood illumination (AO-TFI) images of the retinal pigment epithelium (RPE) in central serous chorioretinopathy (CSCR) with standard clinical images and compare cell morphological feat
Externí odkaz:
https://doaj.org/article/e19b750f09504658b73bf53b9316e72a
Publikováno v:
NeuroImage, Vol 245, Iss , Pp 118697- (2021)
Purpose: Reducing the injected activity and/or the scanning time is a desirable goal to minimize radiation exposure and maximize patients’ comfort. To achieve this goal, we developed a deep neural network (DNN) model for synthesizing full-dose (FD)
Externí odkaz:
https://doaj.org/article/6e6aa4f1cd8c46f89f61150479de2fdc
Autor:
Quentin Haas, Nikolay Borisov, David Vicente Alvarez, Sohrab Ferdowsi, Leonhard von Meyenn, Douglas Teodoro, Poorya Amini
Publikováno v:
Frontiers in Digital Health, Vol 3 (2021)
The 2019 coronavirus (COVID-19) pandemic revealed the urgent need for the acceleration of vaccine development worldwide. Rapid vaccine development poses numerous risks for each category of vaccine technology. By using the Risklick artificial intellig
Externí odkaz:
https://doaj.org/article/26473ecebba642e8bdcb15543e14aa70
Autor:
Douglas Teodoro, Sohrab Ferdowsi, Nikolay Borissov, Elham Kashani, David Vicente Alvarez, Jenny Copara, Racha Gouareb, Nona Naderi, Poorya Amini
Publikováno v:
Journal of Medical Internet Research, Vol 23, Iss 9, p e30161 (2021)
BackgroundThe COVID-19 global health crisis has led to an exponential surge in published scientific literature. In an attempt to tackle the pandemic, extremely large COVID-19–related corpora are being created, sometimes with inaccurate information,
Externí odkaz:
https://doaj.org/article/cba849c742e04910a85f0f0de52fc941
Autor:
Isaac Shiri, Alireza Vafaei Sadr, Mehdi Amini, Yazdan Salimi, Amirhossein Sanaat, Azadeh Akhavanallaf, Behrooz Razeghi, Sohrab Ferdowsi, Abdollah Saberi, Hossein Arabi, Minerva Becker, Slava Voloshynovskiy, Deniz Gündüz, Arman Rahmim, Habib Zaidi
Publikováno v:
Clinical Nuclear Medicine, 47(7), 606-617. LIPPINCOTT WILLIAMS & WILKINS
Purpose The generalizability and trustworthiness of deep learning (DL)-based algorithms depend on the size and heterogeneity of training datasets. However, because of patient privacy concerns and ethical and legal issues, sharing medical images betwe
Autor:
Isaac Shiri, Alireza Vafaei Sadr, Azadeh Akhavan, Yazdan Salimi, Amirhossein Sanaat, Mehdi Amini, Behrooz Razeghi, Abdollah Saberi, Hossein Arabi, Sohrab Ferdowsi, Slava Voloshynovskiy, Deniz Gündüz, Arman Rahmim, Habib Zaidi
Publikováno v:
European Journal of Nuclear Medicine and Molecular Imaging, 50, 1034-1050. SPRINGER
Purpose Attenuation correction and scatter compensation (AC/SC) are two main steps toward quantitative PET imaging, which remain challenging in PET-only and PET/MRI systems. These can be effectively tackled via deep learning (DL) methods. However, tr
Publikováno v:
ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Autor:
Sohrab Ferdowsi, Jenny Copara, Racha Gouareb, Nikolay Borissov, Fernando Jaume-Santero, Poorya Amini, Douglas Teodoro
Publikováno v:
Artificial Intelligence in Medicine ISBN: 9783031093418
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5e072839b57ea077a6f1fa71af2d1c77
https://doi.org/10.1007/978-3-031-09342-5_24
https://doi.org/10.1007/978-3-031-09342-5_24
Publikováno v:
Network Science ISBN: 9783030972394
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f757622f21717f3524cd9534e241e8b4
https://doi.org/10.1007/978-3-030-97240-0_7
https://doi.org/10.1007/978-3-030-97240-0_7
Autor:
Isaac Shiri, Alireza Vafaei Sadr, Amirhossein Sanaat, Sohrab Ferdowsi, Hossein Arabi, Habib Zaidi
Publikováno v:
2021 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).