Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Sohier, Julien"'
Publikováno v:
Phys. Rev. E 97, 052116 (2018)
We study the effect of a large obstacle on the so called residence time, i.e., the time that a particle performing a symmetric random walk in a rectangular (2D) domain needs to cross the strip. We observe a complex behavior, that is we find out that
Externí odkaz:
http://arxiv.org/abs/1712.01309
Autor:
Lacoin, Hubert, Sohier, Julien
We investigate disorder relevance for the pinning of a renewal whose inter-arrival law has tail exponent $\alpha>0$ when the law of the random environment is in the domain of attraction of a stable law with parameter $\gamma \in (1,2)$. We prove that
Externí odkaz:
http://arxiv.org/abs/1610.06786
Autor:
Sohier, Julien
Ce travail s'articule en deux parties principales: on illustre d'abord la notion de longueur de corrélation pour des systèmes d'accrochage homogènes proche du point critique en montrant la convergence en loi du système renormalisé vers un sous e
Externí odkaz:
http://tel.archives-ouvertes.fr/tel-00534716
http://tel.archives-ouvertes.fr/docs/00/53/47/16/PDF/these.pdf
http://tel.archives-ouvertes.fr/docs/00/53/47/16/PDF/these.pdf
Autor:
Caputo, Pietro, Sohier, Julien
We consider a flip dynamics for directed (1+d)-dimensional lattice paths with length L. The model can be interpreted as a higher dimensional version of the simple exclusion process, the latter corresponding to the case d=1. We prove that the mixing t
Externí odkaz:
http://arxiv.org/abs/1504.02354
Metastability is a physical phenomenon ubiquitous in first order phase transitions. A fruitful mathematical way to approach this phenomenon is the study of rare transitions Markov chains. For Metropolis chains associated with Statistical Mechanics sy
Externí odkaz:
http://arxiv.org/abs/1412.7923
We study the asymptotic hitting time $\tau^{(n)}$ of a family of Markov processes $X^{(n)}$ to a target set $G^{(n)}$ when the process starts from a trap defined by very general properties. We give an explicit description of the law of $X^{(n)}$ cond
Externí odkaz:
http://arxiv.org/abs/1410.4814
Autor:
Sohier, Julien
We consider a hierarchical pinning model introduced by B.Derrida, V.Hakim and J.Vannimenus which undergoes a localization/delocalization phase transition. This model depends on two parameters $b$ and $s$. We show that in the particular case where $b=
Externí odkaz:
http://arxiv.org/abs/1408.3208
Autor:
Sohier, Julien
The strip wetting model is defined by giving a (continuous space) one dimensionnal random walk $S$ a reward $\gb$ each time it hits the strip $\R^{+} \times [0,a]$ (where $a$ is a positive parameter), which plays the role of a defect line. We show th
Externí odkaz:
http://arxiv.org/abs/1406.3604
Publikováno v:
Markov Processes and Related Fields, 22, 443-466 (2016)
In the last decades the problem of metastability has been attacked on rigorous grounds via many different approaches and techniques which are briefly reviewed in this paper. It is then useful to understand connections between different point of views
Externí odkaz:
http://arxiv.org/abs/1401.3522
Publikováno v:
Annals of Probability 2014, Vol. 42, No. 2, 689-724
In this article, we consider the continuous analog of the celebrated Mandelbrot star equation with infinitely divisible weights. Mandelbrot introduced this equation to characterize the law of multiplicative cascades. We show existence and uniqueness
Externí odkaz:
http://arxiv.org/abs/1201.5219