Zobrazeno 1 - 10
of 183
pro vyhledávání: '"Sogabe, Tomohiro"'
This note considers the computation of the logarithm of symmetric positive definite matrices using the Gauss--Legendre (GL) quadrature. The GL quadrature becomes slow when the condition number of the given matrix is large. In this note, we propose a
Externí odkaz:
http://arxiv.org/abs/2410.22014
Publikováno v:
Special Matrices, Vol 12, Iss 1, Pp 970-989 (2024)
This article considers the computation of the matrix exponential eA{{\rm{e}}}^{A} with numerical quadrature. Although several quadrature-based algorithms have been proposed, they focus on (near) Hermitian matrices. In order to deal with non-Hermitian
Externí odkaz:
https://doaj.org/article/7c76cdb981cc4f7fa61c7c9f9fead7b9
We consider the convolution equation $F*X=B$, where $F\in\mathbb{R}^{3\times 3}$ and $B\in\mathbb{R}^{m\times n}$ are given, and $X\in\mathbb{R}^{m\times n}$ is to be determined. The convolution equation can be regarded as a linear system with a coef
Externí odkaz:
http://arxiv.org/abs/2306.15359
Publikováno v:
Spec. Matrices, 12 (2024) 20240013
This paper considers the computation of the matrix exponential $\mathrm{e}^A$ with numerical quadrature. Although several quadrature-based algorithms have been proposed, they focus on (near) Hermitian matrices. In order to deal with non-Hermitian mat
Externí odkaz:
http://arxiv.org/abs/2306.14197
Publikováno v:
Special Matrices, Vol 12, Iss 1, Pp 2345-2356 (2024)
We consider the convolution equation F*X=BF* X=B, where F∈R3×3F\in {{\mathbb{R}}}^{3\times 3} and B∈Rm×nB\in {{\mathbb{R}}}^{m\times n} are given and X∈Rm×nX\in {{\mathbb{R}}}^{m\times n} is to be determined. The convolution equation can be
Externí odkaz:
https://doaj.org/article/0395be2ae6d04a78ba5386280cf675cd
Autor:
Miyatake, Yuto, Sogabe, Tomohiro
The choice of relaxation parameter in the projected successive overrelaxation (PSOR) method for nonnegative quadratic programming problems is problem-dependent. We present novel adaptive PSOR algorithms that adaptively control the relaxation paramete
Externí odkaz:
http://arxiv.org/abs/2112.05311
Publikováno v:
Quantum Information and Computation, Vol.20, No.1&2, pp.14-36, (Feb. 2020)
For matrix $A$, vector $\boldsymbol{b}$ and function $f$, the computation of vector $f(A)\boldsymbol{b}$ arises in many scientific computing applications. We consider the problem of obtaining quantum state $\lvert f \rangle$ corresponding to vector $
Externí odkaz:
http://arxiv.org/abs/2106.08075
The matrix functions can be defined by Cauchy's integral formula and can be approximated by the linear combination of inverses of shifted matrices using a quadrature formula. In this paper, we show a concrete construction of a framework to implement
Externí odkaz:
http://arxiv.org/abs/2106.08076