Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Sofiya Ivanovska"'
Publikováno v:
Digital Presentation and Preservation of Cultural and Scientific Heritage, Vol 11 (2021)
Support Vector Machines are a widely used tool in Machine Learning. They have some important advantages with regards to the more popular Deep Neural Networks. For the problem of image classification, multiple SVMs may be used and the issue of finding
Externí odkaz:
https://doaj.org/article/24f6d42ef3764e8c86fcbf8254ec0fd0
Autor:
Krassimir D. Naydenov, Michel K. Naydenov, Alexander Alexandrov, Todor Gurov, Veselka Gyuleva, Georgi Hinkov, Sofiya Ivanovska, Anatoly Tsarev, Biljana Nikolic, Venceslas Goudiaby, Christopher Carcaillet, Roman Volosyanchuk, Srdjan Bojovic, Kole Vasilevski, Vlado Matevski, Lorenzo Peruzzi, Andreas Christou, Despina Paitaridou, Irina Goia, Salim Kamary, Suleyman Gulcu, Cengiz Ture, Faruk Bogunic
Here, from macrophylogeographic mtDNA empirical data, we propose a scenario for the evolution and speciation of two important forest trees, European black pine and Scotch pine, and their multiple subspecies and varieties. Molecular clock simulations
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::367419cd5e824d7ea9f1a9a0964a4f90
https://doi.org/10.21203/rs.3.rs-2444531/v1
https://doi.org/10.21203/rs.3.rs-2444531/v1
Publikováno v:
Cluster Computing. 25:1637-1644
The paper presents a supercomputer parallel implementation of a brain inspired model combining a Python module simulating a layer of retina ganglion cells and NEST Simulator for a layer of spike timing neurons of Lateral geniculate nucleus (LGN) in t
Publikováno v:
Scopus-Elsevier
Support Vector Machines are a widely used tool in Machine Learning. They have some important advantages with regards to the more popular Deep Neural Networks. For the problem of image classification, multiple SVMs may be used and the issue of finding
Autor:
Krassimir Naydenov, Michel Naydenov, Alexander Alexandrov, Todor Gurov, Veselka Gyuleva, Georgi Hinkov, Sofiya Ivanovska, Anatoly Tsarev, Biljana Nikolic, Venceslas Goudiaby, Christopher Carcaillet, Roman Volosyanchuk, Srdjan Bojovic, Kole Vasilevski, Vlado Matevski, Lorenzo Peruzzi, Andreas Christou, Despina Paitaridou, Irina Goia, Salim Kamary, Suleyman Gulcu, Cengiz Ture, Faruk Bogunic
Here, from macrophylogeographic mtDNA empirical data, we proposed a scenario of the evolution and speciation of two important forest trees, European Black Pine and Scotch Pine, and their multiple subspecies and varieties. Molecular clock simulations
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::77670a953137820bd98fdd7216228167
https://doi.org/10.22541/au.164421307.75303809/v1
https://doi.org/10.22541/au.164421307.75303809/v1
Autor:
Emanouil Atanassov, Sofiya Ivanovska
Publikováno v:
Computational Science – ICCS 2022 ISBN: 9783031087592
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0e27ff1e939ebda36d7c0bd72c064df5
https://doi.org/10.1007/978-3-031-08760-8_53
https://doi.org/10.1007/978-3-031-08760-8_53
Publikováno v:
Advances in High Performance Computing ISBN: 9783030553463
HPC
HPC
The quasi-Monte Carlo methods use specially crafted sequences instead of the usual pseudo-random sequences used in Monte Carlo methods, in order to improve on the rate of convergence.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ca15d3cc81220955c7a77e40115948d2
https://doi.org/10.1007/978-3-030-55347-0_13
https://doi.org/10.1007/978-3-030-55347-0_13
Publikováno v:
Large-Scale Scientific Computing ISBN: 9783319734408
LSSC
LSSC
The quasi-Monte Carlo algorithms utilize deterministic low-discrepancy sequences in order to increase the rate of convergence of stochastic simulation algorithms. Such kinds of algorithms are widely applicable and consume large share of the computati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0f8cc436a5ed180829e421e59d9b3b48
https://doi.org/10.1007/978-3-319-73441-5_27
https://doi.org/10.1007/978-3-319-73441-5_27
Publikováno v:
ICCS
In this work we consider the problem of reconstruction of unknown density based on a given sample. We present a method for density reconstruction which includes B-spline approximation, least squares method and Monte Carlo method for computing integra
Publikováno v:
Procedia Computer Science
Scopus
ICCS
Scopus
ICCS
Trade-off between the cost-efficiency of powerful computational accelerators and the increasing energy needed to perform numerical tasks can be tackled by implementation of algorithms on the Intel Multiple Integrated Cores (MIC) architecture. The bes