Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Sofia Tarricone"'
Publikováno v:
Bothner, T, Cafasso, M & Tarricone, S 2022, ' Momenta spacing distributions in anharmonic oscillators and the higher order finite temperature Airy kernel ', Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, vol. 58, no. 3, pp. 1505–1546 . https://doi.org/10.1214/21-AIHP1211
We rigorously compute the integrable system for the limiting $(N\rightarrow\infty)$ distribution function of the extreme momentum of $N$ noninteracting fermions when confined to an anharmonic trap $V(q)=q^{2n}$ for $n\in\mathbb{Z}_{\geq 1}$ at positi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f61ecdc1c73577c33c2abb4da55a96f8
https://hal.archives-ouvertes.fr/hal-03115038
https://hal.archives-ouvertes.fr/hal-03115038
Autor:
Sofia Tarricone
Publikováno v:
Symmetry, Integrability and Geometry : Methods and Applications
Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2021, ⟨10.3842/SIGMA.2021.002⟩
Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2021, ⟨10.3842/SIGMA.2021.002⟩
International audience; We consider Fredholm determinants of matrix convolution operators associated to matrix versions of the $n - $th Airy functions. Using the theory of integrable operators, we relate them to a fully noncommutative Painlev\'e II h
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e0a6075e21ea887fc5b28b15498f4f05
https://hal.archives-ouvertes.fr/hal-03115034
https://hal.archives-ouvertes.fr/hal-03115034