Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Soergel, Wolfgang"'
We consider categories of equivariant mixed Tate motives, where equivariant is understood in the sense of Borel. We give the two usual definitions of equivariant motives, via the simplicial Borel construction and via algebraic approximations of it. T
Externí odkaz:
http://arxiv.org/abs/1809.05480
Autor:
Schnürer, Olaf M., Soergel, Wolfgang
We introduce and study the notion of a locally proper map between topological spaces. We show that fundamental constructions of sheaf theory, more precisely proper base change, projection formula, and Verdier duality, can be extended from continuous
Externí odkaz:
http://arxiv.org/abs/1404.7630
Autor:
Soergel, Wolfgang, Wendt, Matthias
For a variety with a Whitney stratification by affine spaces, we study categories of motivic sheaves which are constant mixed Tate along the strata. We are particularly interested in those cases where the category of mixed Tate motives over a point i
Externí odkaz:
http://arxiv.org/abs/1404.6333
Autor:
Rottmaier, Michael, Soergel, Wolfgang
We show that the standard graded cover of the well-known category $\mathcal O$ of Bernstein-Gelfand-Gelfand can be characterized by its compatibility with the action of the center of the enveloping algebra.
Comment: 13 pages
Comment: 13 pages
Externí odkaz:
http://arxiv.org/abs/1402.1273
Publikováno v:
Compos. Math. 150 (2014), no. 2, 273-332
We prove an analogue of Koszul duality for category $\mathcal{O}$ of a reductive group $G$ in positive characteristic $\ell$ larger than 1 plus the number of roots of $G$. However there are no Koszul rings, and we do not prove an analogue of the Kazh
Externí odkaz:
http://arxiv.org/abs/1209.3760
Autor:
Soergel, Wolfgang
We prove an analogon of Koszul duality for category O in positive characteristic. However, there are no Koszul rings, and we do not prove an analog of the Kazhdan-Lusztig conjectures in this context.
Comment: Some proofs in this article are inco
Comment: Some proofs in this article are inco
Externí odkaz:
http://arxiv.org/abs/1109.0563
Autor:
Soergel, Wolfgang
Publikováno v:
Math Semesterber (2008) 55: 197-202
This is an attempt to model ambient space as a three-dimensional real affine space with a distinguished group of automorphisms containing the translations and acting freely and transitively on pairs consisting of a half-plane together with a half-lin
Externí odkaz:
http://arxiv.org/abs/0806.4052
Autor:
Soergel, Wolfgang
We consider the principal block of category O and its graded version. On the space of homomorphisms from a Verma module to an indecomposable tilting module we may define natural filtrations following Andersen. The arguments given in this article prov
Externí odkaz:
http://arxiv.org/abs/math/0604589
Autor:
Soergel, Wolfgang
Publikováno v:
GAFA, Vol. 17 (2007) 2066-2089
On the space of homomorphisms from a Verma module to an indecomposable tilting module of the BGG-category O we define a natural filtration following Andersen and establish a formula expressing the dimensions of the filtration steps in terms of coeffi
Externí odkaz:
http://arxiv.org/abs/math/0604590
Autor:
Soergel, Wolfgang
Publikováno v:
JIMJ (2007) 6(3), 501-525
We explain a strategy for a proof of the positivity of all coefficients of Kazhdan-Lusztig-polynomials for arbitrary Coxeter groups by constructing spaces whose dimensions we conjecture to be these coefficients.
Comment: Version accepted to be p
Comment: Version accepted to be p
Externí odkaz:
http://arxiv.org/abs/math/0403496