Zobrazeno 1 - 10
of 31 985
pro vyhledávání: '"So, Jae Young"'
Autor:
Raymond, Alexander W., Doeleman, Sheperd S., Asada, Keiichi, Blackburn, Lindy, Bower, Geoffrey C., Bremer, Michael, Broguiere, Dominique, Chen, Ming-Tang, Crew, Geoffrey B., Dornbusch, Sven, Fish, Vincent L., García, Roberto, Gentaz, Olivier, Goddi, Ciriaco, Han, Chih-Chiang, Hecht, Michael H., Huang, Yau-De, Janssen, Michael, Keating, Garrett K., Koay, Jun Yi, Krichbaum, Thomas P., Lo, Wen-Ping, Matsushita, Satoki, Matthews, Lynn D., Moran, James M., Norton, Timothy J., Patel, Nimesh, Pesce, Dominic W., Ramakrishnan, Venkatessh, Rottmann, Helge, Roy, Alan L., Sánchez, Salvador, Tilanus, Remo P. J., Titus, Michael, Torne, Pablo, Wagner, Jan, Weintroub, Jonathan, Wielgus, Maciek, Young, André, Akiyama, Kazunori, Albentosa-Ruíz, Ezequiel, Alberdi, Antxon, Alef, Walter, Algaba, Juan Carlos, Anantua, Richard, Azulay, Rebecca, Bach, Uwe, Baczko, Anne-Kathrin, Ball, David, Baloković, Mislav, Bandyopadhyay, Bidisha, Barrett, John, Bauböck, Michi, Benson, Bradford A., Bintley, Dan, Blundell, Raymond, Bouman, Katherine L., Boyce, Hope, Brissenden, Roger, Britzen, Silke, Broderick, Avery E., Bronzwaer, Thomas, Bustamante, Sandra, Carlstrom, John E., Chael, Andrew, Chan, Chi-kwan, Chang, Dominic O., Chatterjee, Koushik, Chatterjee, Shami, Chen, Yongjun, Cheng, Xiaopeng, Cho, Ilje, Christian, Pierre, Conroy, Nicholas S., Conway, John E., Crawford, Thomas M., Cruz-Osorio, Alejandro, Cui, Yuzhu, Dahale, Rohan, Davelaar, Jordy, De Laurentis, Mariafelicia, Deane, Roger, Dempsey, Jessica, Desvignes, Gregory, Dexter, Jason, Dhruv, Vedant, Dihingia, Indu K., Dzib, Sergio A., Eatough, Ralph P., Emami, Razieh, Falcke, Heino, Farah, Joseph, Fomalont, Edward, Fontana, Anne-Laure, Ford, H. Alyson, Foschi, Marianna, Fraga-Encinas, Raquel, Freeman, William T., Friberg, Per, Fromm, Christian M., Fuentes, Antonio, Galison, Peter, Gammie, Charles F., Georgiev, Boris, Gold, Roman, Gómez-Ruiz, Arturo I., Gómez, José L., Gu, Minfeng, Gurwell, Mark, Hada, Kazuhiro, Haggard, Daryl, Hesper, Ronald, Heumann, Dirk, Ho, Luis C., Ho, Paul, Honma, Mareki, Huang, Chih-Wei L., Huang, Lei, Hughes, David H., Ikeda, Shiro, Impellizzeri, C. M. Violette, Inoue, Makoto, Issaoun, Sara, James, David J., Jannuzi, Buell T., Jeter, Britton, Jiang, Wu, Jiménez-Rosales, Alejandra, Johnson, Michael D., Jorstad, Svetlana, Jones, Adam C., Joshi, Abhishek V., Jung, Taehyun, Karuppusamy, Ramesh, Kawashima, Tomohisa, Kettenis, Mark, Kim, Dong-Jin, Kim, Jae-Young, Kim, Jongsoo, Kim, Junhan, Kino, Motoki, Kocherlakota, Prashant, Kofuji, Yutaro, Koch, Patrick M., Koyama, Shoko, Kramer, Carsten, Kramer, Joana A., Kramer, Michael, Kubo, Derek, Kuo, Cheng-Yu, La Bella, Noemi, Lee, Sang-Sung, Levis, Aviad, Li, Zhiyuan, Lico, Rocco, Lindahl, Greg, Lindqvist, Michael, Lisakov, Mikhail, Liu, Jun, Liu, Kuo, Liuzzo, Elisabetta, Lobanov, Andrei P., Loinard, Laurent, Lonsdale, Colin J., Lowitz, Amy E., Lu, Ru-Sen, MacDonald, Nicholas R., Mahieu, Sylvain, Maier, Doris, Mao, Jirong, Marchili, Nicola, Markoff, Sera, Marrone, Daniel P., Marscher, Alan P., Martí-Vidal, Iván, Medeiros, Lia, Menten, Karl M., Mizuno, Izumi, Mizuno, Yosuke, Montgomery, Joshua, Moriyama, Kotaro, Moscibrodzka, Monika, Mulaudzi, Wanga, Müller, Cornelia, Müller, Hendrik, Mus, Alejandro, Musoke, Gibwa, Myserlis, Ioannis, Nagai, Hiroshi, Nagar, Neil M., Nakamura, Masanori, Narayanan, Gopal, Natarajan, Iniyan, Nathanail, Antonios, Fuentes, Santiago Navarro, Neilsen, Joey, Ni, Chunchong, Nowak, Michael A., Oh, Junghwan, Okino, Hiroki, Sánchez, Héctor Raúl Olivares, Oyama, Tomoaki, Özel, Feryal, Palumbo, Daniel C. M., Paraschos, Georgios Filippos, Park, Jongho, Parsons, Harriet, Pen, Ue-Li, Piétu, Vincent, PopStefanija, Aleksandar, Porth, Oliver, Prather, Ben, Principe, Giacomo, Psaltis, Dimitrios, Pu, Hung-Yi, Raffin, Philippe A., Rao, Ramprasad, Rawlings, Mark G., Ricarte, Angelo, Ripperda, Bart, Roelofs, Freek, Romero-Cañizales, Cristina, Ros, Eduardo, Roshanineshat, Arash, Ruiz, Ignacio, Ruszczyk, Chet, Rygl, Kazi L. J., Sánchez-Argüelles, David, Sánchez-Portal, Miguel, Sasada, Mahito, Satapathy, Kaushik, Savolainen, Tuomas, Schloerb, F. Peter, Schonfeld, Jonathan, Schuster, Karl-Friedrich, Shao, Lijing, Shen, Zhiqiang, Small, Des, Sohn, Bong Won, SooHoo, Jason, Salas, León David Sosapanta, Souccar, Kamal, Srinivasan, Ranjani, Stanway, Joshua S., Sun, He, Tazaki, Fumie, Tetarenko, Alexandra J., Tiede, Paul, Toma, Kenji, Toscano, Teresa, Traianou, Efthalia, Trent, Tyler, Trippe, Sascha, Turk, Matthew, van Bemmel, Ilse, van Langevelde, Huib Jan, van Rossum, Daniel R., Vos, Jesse, Ward-Thompson, Derek, Wardle, John, Washington, Jasmin E., Wharton, Robert, Wiik, Kaj, Witzel, Gunther, Wondrak, Michael F., Wong, George N., Wu, Qingwen, Yadlapalli, Nitika, Yamaguchi, Paul, Yfantis, Aristomenis, Yoon, Doosoo, Younsi, Ziri, Yu, Wei, Yuan, Feng, Yuan, Ye-Fei, Zensus, J. Anton, Zhang, Shuo, Zhao, Guang-Yao, Zhao, Shan-Shan
Publikováno v:
The Astronomical Journal, Volume 168, Issue 3, id.130, 19 pp. 2024
The first very long baseline interferometry (VLBI) detections at 870$\mu$m wavelength (345$\,$GHz frequency) are reported, achieving the highest diffraction-limited angular resolution yet obtained from the surface of the Earth, and the highest-freque
Externí odkaz:
http://arxiv.org/abs/2410.07453
Autor:
Lee, Joseph, Yang, Shu, Baik, Jae Young, Liu, Xiaoxi, Tan, Zhen, Li, Dawei, Wen, Zixuan, Hou, Bojian, Duong-Tran, Duy, Chen, Tianlong, Shen, Li
Predicting phenotypes with complex genetic bases based on a small, interpretable set of variant features remains a challenging task. Conventionally, data-driven approaches are utilized for this task, yet the high dimensional nature of genotype data m
Externí odkaz:
http://arxiv.org/abs/2410.01795
Resistive random-access memory (ReRAM) crossbar arrays are suitable for efficient inference computations in neural networks due to their analog general matrix-matrix multiplication (GEMM) capabilities. However, traditional ReRAM-based accelerators su
Externí odkaz:
http://arxiv.org/abs/2409.16640
Autor:
Peng, Sijia, Lu, Ru-Sen, Goddi, Ciriaco, Krichbaum, Thomas P., Li, Zhiyuan, Liu, Ruo-Yu, Kim, Jae-Young, Nakamura, Masanori, Yuan, Feng, Chen, Liang, Marti-Vidal, Ivan, Shen, Zhiqiang
Faraday rotation is an important probe of the magnetic fields and magnetized plasma around active galactic nuclei (AGN) jets. We present a Faraday rotation measure image of the M87 jet between 85.2 GHz and 101.3 GHz with a resolution of ~2" with the
Externí odkaz:
http://arxiv.org/abs/2409.12028
Person search is the task to localize a query person in gallery datasets of scene images. Existing methods have been mainly developed to handle a single target dataset only, however diverse datasets are continuously given in practical applications of
Externí odkaz:
http://arxiv.org/abs/2407.21252
Event cameras are dynamic vision sensors inspired by the biological retina, characterized by their high dynamic range, high temporal resolution, and low power consumption. These features make them capable of perceiving 3D environments even in extreme
Externí odkaz:
http://arxiv.org/abs/2407.10831
Autor:
Li, Dawei, Yang, Shu, Tan, Zhen, Baik, Jae Young, Yun, Sukwon, Lee, Joseph, Chacko, Aaron, Hou, Bojian, Duong-Tran, Duy, Ding, Ying, Liu, Huan, Shen, Li, Chen, Tianlong
Recent advancements in large language models (LLMs) have achieved promising performances across various applications. Nonetheless, the ongoing challenge of integrating long-tail knowledge continues to impede the seamless adoption of LLMs in specializ
Externí odkaz:
http://arxiv.org/abs/2405.04819
Collecting and labeling real datasets to train the person search networks not only requires a lot of time and effort, but also accompanies privacy issues. The weakly-supervised and unsupervised domain adaptation methods have been proposed to alleviat
Externí odkaz:
http://arxiv.org/abs/2404.00626
Autor:
Oh, Minyoung, Sim, Jae-Young
Lifelong person re-identification (LReID) assumes a practical scenario where the model is sequentially trained on continuously incoming datasets while alleviating the catastrophic forgetting in the old datasets. However, not only the training dataset
Externí odkaz:
http://arxiv.org/abs/2403.10022
Graph Enhanced Reinforcement Learning for Effective Group Formation in Collaborative Problem Solving
This study addresses the challenge of forming effective groups in collaborative problem-solving environments. Recognizing the complexity of human interactions and the necessity for efficient collaboration, we propose a novel approach leveraging graph
Externí odkaz:
http://arxiv.org/abs/2403.10006