Zobrazeno 1 - 10
of 334
pro vyhledávání: '"Snoek, C.G.M."'
Autor:
Thong, W., Snoek, C.G.M.
Publikováno v:
ACM Transactions on Multimedia Computing Communications and Applications, 18(1):13. Association for Computing Machinery (ACM)
This article strives for a diversely supervised visual product search, where queries specify a diverse set of labels to search for. Where previous works have focused on representing attribute, instance, or category labels individually, we consider th
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Yang, P., Hu, V.T., Mettes, P., Snoek, C.G.M., Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M.
Publikováno v:
Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020 : proceedings, VII, 505-521
Computer Vision – ECCV 2020 ISBN: 9783030585709
ECCV (7)
Computer Vision – ECCV 2020 ISBN: 9783030585709
ECCV (7)
This paper strives to localize the temporal extent of an action in a long untrimmed video. Where existing work leverages many examples with their start, their ending, and/or the class of the action during training time, we propose few-shot common act
Autor:
Derakhshani, M.M., Najdenkoska, I., van Sonsbeek, T., Zhen, X., Mahapatra, D., Worring, M., Snoek, C.G.M., Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S.
Publikováno v:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022 : proceedings, II
Deep learning models have shown a great effectiveness in recognition of findings in medical images. However, they cannot handle the ever-changing clinical environment, bringing newly annotated medical data from different sources. To exploit the incom
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b04c4abd9d2b5de5511056d7c3735704
https://dare.uva.nl/personal/pure/en/publications/lifelonger-a-benchmark-for-continual-disease-classification(5dbd9ab7-8ecd-43ae-b79c-eea2d3a8304f).html
https://dare.uva.nl/personal/pure/en/publications/lifelonger-a-benchmark-for-continual-disease-classification(5dbd9ab7-8ecd-43ae-b79c-eea2d3a8304f).html
Autor:
Yang, P., Asano, Y.M., Mettes, P., Snoek, C.G.M., Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T.
Publikováno v:
Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022 : proceedings, XXXIV
Lecture Notes in Computer Science ISBN: 9783031198298
Lecture Notes in Computer Science ISBN: 9783031198298
The goal of this paper is to bypass the need for labelled examples in few-shot video understanding at run time. While proven effective, in many practical video settings even labelling a few examples appears unrealistic. This is especially true as the
Autor:
Thoker, F.M., Doughty, H., Bagad, P., Snoek, C.G.M., Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T.
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031198298
Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022 : proceedings, XXXIV
Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022 : proceedings, XXXIV
Despite the recent success of video self-supervised learning models, there is much still to be understood about their generalization capability. In this paper, we investigate how sensitive video self-supervised learning is to the current conventional
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::253578ddaa9fd70433600fe3480b14bc
https://dare.uva.nl/personal/pure/en/publications/how-severe-is-benchmarksensitivity-in-video-selfsupervised-learning(3f64ddd3-6dae-463c-b76b-39a4ecfe051f).html
https://dare.uva.nl/personal/pure/en/publications/how-severe-is-benchmarksensitivity-in-video-selfsupervised-learning(3f64ddd3-6dae-463c-b76b-39a4ecfe051f).html
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Du, Y., Holla, N., Zhen, X., Snoek, C.G.M., Shutova, E., Zong, C., Xia, F., Li, W., Navigli, R.
Publikováno v:
The 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: ACL-IJCNLP 2021 : proceedings of the conference : August 1-6, 2021, 1, 5254-5268
ACL/IJCNLP (1)
ACL/IJCNLP (1)
A critical challenge faced by supervised word sense disambiguation (WSD) is the lack of large annotated datasets with sufficient coverage of words in their diversity of senses. This inspired recent research on few-shot WSD using meta-learning. While
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::47d8751510e4573e0dc5c71fea5c221a
https://doi.org/10.18653/v1/2021.acl-long.409
https://doi.org/10.18653/v1/2021.acl-long.409
Publikováno v:
Proceedings of Machine Learning Research, 139, 2621-2631
This paper introduces kernel continual learning, a simple but effective variant of continual learning that leverages the non-parametric nature of kernel methods to tackle catastrophic forgetting. We deploy an episodic memory unit that stores a subset
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::3d2f1648ac69391d1172ee9317577c68
https://dare.uva.nl/personal/pure/en/publications/kernel-continual-learning(e9bab7f8-4195-4db5-b50c-1938b72ad104).html
https://dare.uva.nl/personal/pure/en/publications/kernel-continual-learning(e9bab7f8-4195-4db5-b50c-1938b72ad104).html