Zobrazeno 1 - 10
of 127
pro vyhledávání: '"Sniady, Piotr"'
Autor:
Marciniak, Mikołaj, Śniady, Piotr
Schensted row insertion is a fundamental component of the Robinson-Schensted-Knuth (RSK) algorithm, a powerful tool in combinatorics and representation theory. This study examines the insertion of a deterministic number into a random tableau of a spe
Externí odkaz:
http://arxiv.org/abs/2407.06213
Autor:
Śniady, Piotr
The transition measure is a foundational concept introduced by Sergey Kerov to represent the shape of a Young diagram as a centered probability measure on the real line. Over a period of decades the transition measure turned out to be an invaluable t
Externí odkaz:
http://arxiv.org/abs/2405.07091
Autor:
Marciniak, Mikołaj, Śniady, Piotr
We investigate asymptotic probabilistic phenomena arising from the application of the Schensted row insertion algorithm, a key component of the Robinson-Schensted-Knuth (RSK) correspondence, to random inputs. Our analysis centers on a random tableau
Externí odkaz:
http://arxiv.org/abs/2302.03762
Autor:
Trokowska, Karolina, Śniady, Piotr
Publikováno v:
The Electronic Journal of Combinatorics 31 (1) (2024), #P1.23
Stanley and F\'eray gave a formula for the irreducible character of the symmetric group related to a multi-rectangular Young diagram. This formula shows that the character is a polynomial in the multi-rectangular coordinates and gives an explicit com
Externí odkaz:
http://arxiv.org/abs/2210.04478
Autor:
Matsumoto, Sho, Śniady, Piotr
Publikováno v:
Algebraic Combinatorics, Volume 5 (2022) no. 4, pp. 771-784
We give closed product formulas for the irreducible characters of the symmetric groups related to rectangular `almost square' Young diagrams $p \times(p+\delta)$ for a fixed value of an integer $\delta$ and an arbitrary integer $p$.
Comment: 17
Comment: 17
Externí odkaz:
http://arxiv.org/abs/2108.12939
Publikováno v:
Probab. Theory Relat. Fields 181, pages 1053-1103 (2021)
We consider the Robinson-Schensted-Knuth algorithm applied to a random input and investigate the shape of the bumping route (in the vicinity of the $y$-axis) when a specified number is inserted into a large Plancherel-distributed tableau. We show tha
Externí odkaz:
http://arxiv.org/abs/2005.14397
Publikováno v:
Advances in Applied Mathematics 145 (2023) 102478
We consider Robinson-Schensted-Knuth algorithm applied to a random input and study the growth of the bottom rows of the corresponding Young diagrams. We prove multidimensional Poisson limit theorem for the resulting Plancherel growth process. In this
Externí odkaz:
http://arxiv.org/abs/2005.13824
Autor:
Maślanka, Łukasz, Śniady, Piotr
Publikováno v:
Doc. Math. 27, 2183-2273 (2022)
We investigate two closely related setups. In the first one we consider a TASEP-style system of particles with specified initial and final configurations. The probability of each history of the system is assumed to be equal. We show that the rescaled
Externí odkaz:
http://arxiv.org/abs/1911.08143
Autor:
Matsumoto, Sho, Śniady, Piotr
Publikováno v:
Sel. Math. New Ser. 26, 10 (2020)
We study asymptotics of random shifted Young diagrams which correspond to a given sequence of reducible projective representations of the symmetric groups. We show limit results (Law of Large Numbers and Central Limit Theorem) for their shapes, provi
Externí odkaz:
http://arxiv.org/abs/1906.07937
Publikováno v:
In Advances in Applied Mathematics April 2023 145