Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Smith K. Khare"'
Autor:
Hamwira Yaacob, Farhad Hossain, Sharunizam Shari, Smith K. Khare, Chui Ping Ooi, U. Rajendra Acharya
Publikováno v:
IEEE Access, Vol 11, Pp 74736-74758 (2023)
Mental fatigue is a psychophysical condition with a significant adverse effect on daily life, compromising both physical and mental wellness. We are experiencing challenges in this fast-changing environment, and mental fatigue problems are becoming m
Externí odkaz:
https://doaj.org/article/9ee4c91f40254b3ca7ba82e5fc0c4ac0
Ensemble Wavelet Decomposition-Based Detection of Mental States Using Electroencephalography Signals
Publikováno v:
Sensors, Vol 23, Iss 18, p 7860 (2023)
Technological advancements in healthcare, production, automobile, and aviation industries have shifted working styles from manual to automatic. This automation requires smart, intellectual, and safe machinery to develop an accurate and efficient brai
Externí odkaz:
https://doaj.org/article/c702efd20a654cbc82c03174e34b0deb
Publikováno v:
IEEE Access, Vol 8, Pp 124055-124065 (2020)
Classification of environmental sounds plays a key role in security, investigation, robotics since the study of the sounds present in a specific environment can allow to get significant insights. Lack of standardized methods for an automatic and effe
Externí odkaz:
https://doaj.org/article/2c435412f80c416cb69926af23188bb8
Publikováno v:
Sensors, Vol 22, Iss 21, p 8128 (2022)
Classification of motor imagery (MI) tasks provides a robust solution for specially-abled people to connect with the milieu for brain-computer interface. Precise selection of uniform tuning parameters of tunable Q wavelet transform (TQWT) for electro
Externí odkaz:
https://doaj.org/article/c6089f439b56410589094a4806315b1b
Publikováno v:
Cognitive Sensors, Volume 2 ISBN: 9780750353465
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b1ac948ce529c7ae6d8784e02d6e0e59
https://doi.org/10.1088/978-0-7503-5346-5ch1
https://doi.org/10.1088/978-0-7503-5346-5ch1
Autor:
Smith K. Khare, U. Rajendra Acharya
Publikováno v:
Khare, S K & Acharya, U R 2023, ' An explainable and interpretable model for attention deficit hyperactivity disorder in children using EEG signals ', Computers in Biology and Medicine, vol. 155, 106676 . https://doi.org/10.1016/j.compbiomed.2023.106676
Background: Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects a person's sleep, mood, anxiety, and learning. Early diagnosis and timely medication can help individuals with ADHD perform daily tasks without
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::08ee52341d0ea1aad68ffb229d11f9bb
https://pure.au.dk/portal/da/publications/an-explainable-and-interpretable-model-for-attention-deficit-hyperactivity-disorder-in-children-using-eeg-signals(548a3eeb-539a-4d49-a2da-599a1954fe6a).html
https://pure.au.dk/portal/da/publications/an-explainable-and-interpretable-model-for-attention-deficit-hyperactivity-disorder-in-children-using-eeg-signals(548a3eeb-539a-4d49-a2da-599a1954fe6a).html
Autor:
Smith K. Khare, Varun Bajaj
Publikováno v:
IRBM. 43:13-21
Early discernment of drivers drowsy state may prevent numerous worldwide road accidents. Electroencephalogram (EEG) signals provide valuable information about the neurological changes for discrimination of alert and drowsy state. A signal is decompos
Publikováno v:
IEEE Sensors Journal. 21:17017-17024
Parkinson’s disease (PD) is a neurodegenerative ailment which causes changes in the neuronal, behavioral, and physiological structures. During the early stages of PD, these changes are very subtle and hence accurate diagnosis is challenging. Pathol
Publikováno v:
Biocybernetics and Biomedical Engineering. 41:679-689
Deep brain simulations play an important role to study physiological and neuronal behavior during Parkinson’s disease (PD). Electroencephalogram (EEG) signals may faithfully represent the changes that occur during PD in the brain. But manual analys
Autor:
Smith K. Khare, Varun Bajaj
Publikováno v:
IEEE Sensors Journal. 21:6421-6428
Background: Drivers drowsiness is one of the prime reasons for road accidents. Electroencephalogram (EEG) signals provide crucial information regarding drowsy state due to neurological changes in the brain. But the complex nature of EEG signals makes